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Abstract

This document provides the PQCRYPTO project's intermediate report on optimized software.
It provides the preliminary software implementation results of selected post-quantum schemes
and corresponding parameters for embedded systems.
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1 Introduction

Modern asymmetric cryptosystems designed to face multiple threats and to maintain long-term
security, require conservative parameter choices that typically pose a major implementation
challenge for small embedded microcontrollers. In this report we survey modern post-quantum
schemes in regard to their implementation on such small embedded microcontrollers. The pri-
mary target platform for this report is the widely deployed ARM Cortex-M4, a rather high-end
32-bit microcontroller. It reviews the most popular schemes in post-quantum cryptography
that support con�dentiality (by encryption) and authentication (by digital signatures). Note
that the report is designed to focus on the implementation challenges and does not include
any detailed discussion of the mathematical background required to understand the design
rationales of the respective post-quantum constructions.

2 Target Platforms

The primary target platform considered in this report is the ARM Cortex-M4 family of mi-
crocontrollers. The primary testing platform for code targeting this family of microcontrollers
is the STM32F407 Discovery development board, which features a Cortex-M4 processor with
�oating-point support running at a frequency of up to 168MHz, 1MB of �ash storage, and
192KB of RAM. The reasons for selecting this particular family of microcontrollers are pri-
mary target platform are the following:

• ARM Cortex-M 32-bit microcontrollers are increasingly becoming the de-facto standard
for many applications; smaller microcontrollers of the same family like the Cortex M0
take over large parts of the market that has for a long time been dominated by 8-bit
AVR microcontrollers. Optimizing for a Cortex-M processor thus ensures relevance of
the results for many real-world applications.

• Selecting a rather high-end microcontroller from the Cortex-M family signi�cantly ex-
tends the range of cryptographic primitives that we can �t into the available RAM and
ROM and thus evaluate di�erent trade-o�s of primitives and parameter choices. The
choice for a large microcontroller also re�ects the fact that in most applications the
deployment of post-quantum primitives is still going to take a few years (in many cases
awaiting standardization by NIST and ETSI). Today's high-end microcontrollers are
likely to re�ect what low-end microcontrollers will look like by the time that applica-
tions migrate to post-quantum cryptography on a large scale.

• Selecting the STM32F407 Discovery board is motivated by the fact that it is widely
available at low cost, which ensures easy reproducibility of benchmark results for other
research groups.

In addition to the primary target platform we also report on optimization e�orts of select
post-quantum schemes for smaller microcontrollers, speci�cally the ARM Cortex-M0 32-bit
microcontroller and the AVR ATmega family of 8-bit microcontrollers.

3 Optimization for embedded microcontrollers

Optimization of cryptographic software on large processors found, for example, in servers,
desktop and laptop computers or smartphones typically aims at speed, i.e., minimizing the
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number of CPU cycles required for cryptographic operations. Optimization of cryptographic
software on small embedded microcontrollers is a multidimensional task, typically aiming at
maximizing speed, while minimizing ROM and RAM usage. Those optimization goals are
often con�icting. For example, using tables of precomputed frequently used values speeds up
the software (because the values do not need to be recomputed), but increases RAM or ROM
usage (depending on where the precomputed tables are stored). This makes such optimization
e�orts highly non-trivial, but very rewarding, as a one-time e�ort can be deployed immediately
in many di�erent places.

Common good practice is to ensure that code does not leak secret information through
timing. The reason is that timing attacks (i.e., attacks that exploit such timing leakage) are
often feasible even remotely, so physical protection of devices does not thwart these attacks.
Some deployment scenarios also need to take into account side-channel attacks with phys-
ical access to the device (such as power analysis or analysis of electromagnetic radiation).
Implementations for such deployment scenarios require additional protection.

In the following we describe optimization techniques for our primary target platform, the
ARM Cortex-M4 microcontroller. Most of these optimization techniques also apply to other
embedded microcontrollers; some are speci�c to the ARMv7-M instruction set of the Cortex-
M4.

Loop unrolling and inlining. When repeating a fragment of code (possibly with a slight
variation for each repetition), one would typically encapsulate it in a loop or a function,
depending on the speci�c repetition context. While this reduces the code size and makes the
logic easier to understand and maintain, it increases the number of instructions that need to
be performed. It also impacts register usage. In particular, keeping track of a loop iterator
results in both administrative overhead and additional variables � either in registers, on the
stack, or both.

To mitigate this, one can unroll loops and inline the content of functions: by literally
specifying the repeated instructions, program �ow code is avoided altogether. On embedded
devices, however, an important consideration here is the additional storage requirement, as
well as the overhead of having to load more code from the (often slow and uncached) memory.

Using compile-time macros or code generation, the program �ow can still be speci�ed using
loops and function calls, but the resulting executable is free of such overhead. This provides
�exibility that allows for careful code size and runtime trade-o�s, depending on the available
resources.

Memory alignment. When loading or storing instructions or data, or when performing
branches, the Cortex-M4 processor prefers that the addresses are word-aligned ; if they are
not, penalty cycles may be introduced. A word is 4 bytes, so careful alignment ensures
that all addresses are divisible by 4, which is not done automatically when programming in
assembly, but can be enforced by placing the assembler directive .align 2 at the start of all
data blocks and branch targets, such as at the start of functions.

Starting code at a word boundary is not su�cient to ensure instruction alignment through-
out the full computation. The reason is that some instructions can be encoded in either 2
bytes or 4 bytes. When a 4-byte instruction is spread over two separate words, a penalty cycle
may be introduced when loading these instructions from �ash memory. It can therefore be
advantageous to use add.w instead of add, to force a 4-byte encoding for this instruction (see
A6.7.4 of the Architecture Reference Manual [18]).

Pipelining loads. The ARM Cortex-M4 features a �load multiple� (ldm) instruction, which
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takes N + 1 cycles for loading N word-sized values from memory. A single load (ldr) takes
two cycles, so grouping multiple loads together into an ldm improves both speed and code
size.

Table lookups and caching. The performance di�erence between loading data from main
memory and computing them is not as large on the Cortex-M4 as on a big Intel CPU. It can
therefore quickly be favorable to precompute data and to use lookup tables. However, this
should be avoided for secret data, as this could leak information about the secret in a context
where side-channel attacks with physical access to the device are a concern.

When an assembly developer wants to store constant byte-sized values, the obvious way
to proceed is to use the .byte directive. However, we have described that it can be faster
to perform loads of word-sized values, especially when they can be pipelined. Depending on
the desired trade-o� between speed and ROM/RAM usage, sometimes using a full .word for
every byte can be bene�cial.

Data recomputation. Sometimes data is stored in memory, but an implementation can be
made smaller by computing that data on the �y at the cost of only a small performance
penalty. There are also intermediate alternatives where only some values are stored and the
rest can somehow be recomputed from them.

4 Benchmarking on embedded microcontrollers

In order to gain insight in the cost of deploying post-quantum cryptography in many di�erent
contexts, reliable benchmarks (measurements of speed and memory usage) of the various cryp-
tographic systems on a range of platforms are essential. Especially in the context of embedded
microcontrollers, a few kilobytes less memory usage or a few milliseconds faster implementa-
tion can make the di�erence in earlier widespread adoption of post-quantum cryptography.
We should therefore be able to benchmark at a high accuracy.

The highest level of accuracy is gained when measuring speed at the level of CPU clock
cycles, and by measuring ROM and ROM usage in the exact number of bytes that are used.
While measuring ROM and RAM usage is fairly straightforward, getting reliable speed mea-
surements of an implementation can be notoriously di�cult.

The main reason is that modern CPUs are so complex, that there is a large amount of
external e�ects that can have signi�cant impact on cycle counts. While this problem might
be smaller on an embedded microcontroller compared to a big Intel CPU, it is still something
that should be considered. A problem that is larger on embedded microcontrollers is the larger
range of di�erent memory blocks and peripherals that all have di�erent timing characteristics.
Other reasons for a large deviation in cycle counts could be that the cryptography algorithms
are simply designed that way (for example, the use of rejection sampling in lattice-based
cryptoschemes) or the use of randomness that has to be supplied by an external peripheral.

We now describe a few considerations that are required to get reliable benchmarks on our
ARM Cortex-M4 target platform.

Choosing a cycle counter. The Cortex-M4 comes with two methods of measuring CPU
cycles. First of all, the Data Watchpoint and Trace component is responsible for providing
several debugging features. It also comes with a 32-bit incrementing cycle-accurate counter
that can be read by an application using the special DWT_CYCCNT register. However, 232 cycles
is not enough to benchmark all post-quantum crypto schemes, so this register might over�ow
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many times. A debug event is emitted on over�ow, but capturing this requires additional
debugging hardware.

The alternative is the SysTick system timer, which is a 24-bit decrementing counter that
is decremented at a set frequency, which should be the same as the main clock frequency for
accurate benchmarks. Its current value can also be read from a special register, SYST_CVR.
On under�ow, an interrupt is �red. One can keep track of how many times this interrupt was
�red and combine that with the values before and after a cryptographic operation to get a
complete picture of the number of cycles that were required.

CPU wait states and clock frequency. On the STM32F407, loading instructions and data
from �ash memory can be a serious bottleneck when the main CPU clock frequency is set to
the maximum 168 MHz. The memory is not fast enough to keep up with the main CPU, which
then has to idle until the instructions or data are retrieved. Moreover, how long the CPU
has to idle depends on the speci�c chip. A reliable benchmark of post-quantum cryptographic
algorithms should be meaningful across all Cortex-M4 chips, which means that this waiting
behavior should be avoided to exclude the e�ect of the speci�c chip. On the STM32F407, this
can be achieved by selecting a lower clock frequency and con�guring a zero wait state latency
in the special FLASH_ACR register.

Randomness. Speci�cations of post-quantum cryptographic systems typically require a source
of fresh uniform randomness. The implementer then has to decide where to get this high-
quality randomness from, which is far from trivial. The STM32F407 development board
comes with a hardware random number generator that passes the FIPS PUB 140-2 tests with
a success ratio of 99%. It delivers a fresh 32-bit value at at most every 40 periods of a special
RNG clock that is derived from the PLL clock. However, in practice this introduces some
deviation in speed benchmarks, which should therefore be repeated multiple times.

Measurement setup. Benchmarks should always happen multiple times, preferably as often
as is feasible. One could average the results, but a few outliers (for example, due to some
faulty hardware) can then have a large e�ect on the average. Using the median values is more
robust.

ï»¿

5 Software Implementations

This section gives an overview of implementations of post-quantum cryptographic schemes
optimized for embedded microcontrollers that resulted from the PQCRYPTO project. We give
an overview of implementations of public-key encryption (and key encapsulation) in Section 5.1
and of implementations of digital-signature schemes in Section 5.2.

5.1 Implementations of public-key encryption and key encapsulation

Table 5.1 lists implementations of post-quantum digital-signature schemes optimized for em-
bedded microcontrollers. All implementations listed are results of the PQCRYPTO project
that are described in scienti�c publications.
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Scheme Platform Cycles RAM Bytes ROM Bytes

NewHope [2] ARM Cortex-M4 gen: 964 440 gen: ? 22 828
enc: 1 418 124 enc: ? 22 828
dec: 178 874 dec: ? 22 828

NewHope [2] ARM Cortex-M0 gen: 1 168 224 gen: ? 30 178
enc: 1 738 922 enc: ? 30 178
dec: 298 877 dec: ? 30 178

QcBits [6] ARM Cortex-M4 gen: 140 372 822 gen: ? 62KiB
enc: 2 244 489 enc: ? 62KiB
dec: 14 679 937 dec: ? 62KiB

RLWE encryption [5] ARM Cortex-M0 gen: ? gen: ? ?
enc: 1 573 x103 enc: ? 1.6KiB
dec: 740 x103 dec: ? 1.1KiB

RLWE encryption [5] AVR ATxmega gen: ? gen: ? ?
enc: 999 x103 enc: ? 3.5KiB
dec: 437 x103 dec: ? 2.1KiB

QC-MDPC encryption [20] ARM Cortex-M4 gen: ? gen: ? ?
enc: 7 018 493 enc: 2.7KiB 5.7KiB
dec: 42 129 589 dec: 2.7KiB 5.7KiB

QC-MDPC hybrid encryption [25] ARM Cortex-M4 gen: 63 185 108 gen: 3 136 8 784
enc: 2 623 432 enc: 2 048 8 621
dec: 18 416 012 dec: 2 048 3 064

Table 5.1: Microcontroller implementation results of post-quantum public-key encryption
schemes. All implementations listed are results of the PQCRYPTO project.
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Traditionally, the two main directions for post-quantum public-key encryption and key
agreement are lattice-based schemes and code-based schemes. A potentially interesting addi-
tional candidate is supersingular-isogeny based key encapsulation [17, 7], but as this approach
only fairly recently received increased attention and as it is rather ine�cient in terms of speed,
there are no optimized microcontroller implementations, yet.

5.1.1 Lattice-based public-key encryption and key encapsulation

Lattice-based cryptography has probably received most attention among the di�erent areas
of post-quantum cryptography over the last decade. Unsurprisingly, also implementations
optimized for microcontrollers have been an active area of research. Most of the e�orts of op-
timizing lattice-based encryption and key encapsulation focused on ideal lattices. For example,
both [24] and [19] present optimized Ring-LWE encryption targeting the AVR 8-bit micro-
controllers; [5] describe implementations on the ARM Cortex M0 and AVR ATXmega128; [8]
presents results for the ARM Cortex-M4F; and [2] describe implementations of the NewHope
lattice-based key agreement on ARM Cortex-M0 and ARM Cortex-M4, The general pattern of
these papers is to optimize two main building blocks: arithmetic in the underlying polynomial
ring and noise sampling. The typical approach to perform multiplications in the polynomial
ring is to use the number-theoretic transform (NTT), which is not only very e�cient in terms
of speed, but can also be performed in place, i.e., without requiring any additional memory.
For quite some time, noise sampling focused on di�erent approaches for discrete-Gaussian
sampling, investigating multiple di�erent algorithms with di�erent tradeo�s between speed,
memory requirements and side-channel characteristics. In [1] established that a much simpler
centered-binomial distribution is su�cient for lattice-based encryption and key agreement.
Consequently, [2] use this simpler distribution in their implementation of NewHope.

5.1.2 Code-based public-key encryption and key encapsulation

The McEliece cryptosystems [21] with binary Goppa codes is widely considered one of the
most conservative choices of post-quantum public-key encryption. Its implementation on
small embedded microcontrollers is hampered by the large public key, but this does not mean
that nobody tried to implement it. For example, [11] optimizes for the AVR ATXmega192 and
concludes that �the large public-key matrix Kpub does not �t into the 192 kByte internal Flash

memory. Hence, at least 512 kByte external memory are required for storing the public key�.
More recent works focus on optimizing McEliece with quasi-cyclic medium-density parity-
check (QC-MDPC) codes, that have considerably smaller public keys, but do not have the
same long-term security track record as McElice with binary Goppa codes. For example, [14]
targets AVR 8-bit microcontrollers; [20] optimizes McEliece with QC-MDPC codes on ARM
Cortex-M4 microcontrollers; the same architecture targeted by the �QcBits� key-encapsulation
mechanism described in [6] and in the recent work [9]. Both AVR 8-bit microcontrollers and 32-
bit ARM microcontrollers (speci�cally, the Cortex-M4) are the target of optimization in [25].

5.2 Digital Signatures

Table 5.2 lists implementations of post-quantum digital-signature schemes optimized for em-
bedded microcontrollers. All implementations listed are results of the PQCRYPTO project
that are described in scienti�c publications.
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Scheme Platform Cycles RAM Bytes ROM Bytes

SPHINCS-256 [16] ARM Cortex-M3 gen: 28 205 671 gen: ? 47 948
sign: 589 018 151 sign: 8 755 26 944
verify: 16 414 251 verify: ? 26 976

XMSSMT [16] ARM Cortex-M3 gen: 8 857 708 189 gen: ? ?
sign: 19 441 021 sign: ? ?
verify: 4 961 447 verify: ? ?

Table 5.2: Microcontroller implementation results of post-quantum digital-signature schemes.
All implementations listed are results of the PQCRYPTO project.

The two most promising approaches for post-quantum signatures, in particular on em-
bedded devices, are hash-based signatures and lattice-based signatures. Multivariate-based
signatures are also a potentially interesting candidate because of their small signature size.
However, they su�er from large public keys that prohibits veri�cation of multivariate signa-
tures on many embedded platforms.

5.2.1 Hash-based Signatures

Hash-based signatures are without much doubt the most conservative choice for post-quantum
cryptography, or possibly more generally for public-key cryptography. The reason is that they
can be built from only a cryptographic hash function, a building block that is also required
for all other signature schemes. This promise of high security come at a cost: the so-called
`stateful' XMSSMT scheme has a non-standard API that requires updating the secret key,
while the `stateless' SPHINCS scheme produces large signatures and is considerably slower
than its competitors. On embedded devices, the consequences of having to maintain a state
(i.e. synchronization, complex backups, etc.) are not as severe. Indeed, [15] presents a
smart card implementation of XMSS, and its authors demonstrate its practicality by e�ciently
generating signatures as well as key pairs on-card. Implementing SPHINCS on constrained
devices is less straight-forward. In addition to the large runtime, its memory requirements
present a potentially unsurmountable hurdle: on devices with limited storage space available,
it is not possible to store the full signature. The implementation described in [16] shows that
this is not a hard limit, streaming out the SPHINCS signature part by part as it is generated.
Still, its poor performance may prove prohibitive in many typical use cases for small devices.

5.2.2 Lattice-based Signatures

Optimization of lattice-based signatures on embedded microcontrollers so far focused mainly
on two schemes: the GLP signature scheme presented in [13] and the BLISS signature scheme
presented in [10]. For example, [24] presents optimizations of BLISS for AVR ATXmega micro-
controllers. Also [22] presents optimized implementations of BLISS, but on the ARM Cortex-
M4F. In [3], the authors describe a conversion of the signature schemes from [13] and [10]
to authentication protocols and implementations of those protocols on AVR ATmega and on
a smart card equipped with an ARM7TDMI 32-bit processor. Optimization of lattice-based
signatures�like with lattice-based public-key encryption and key encapsulation�focuses on
fast arithmetic in polynomial rings (typically via the NTT) and e�cient sampling of noise.
One might think that lattice-based signatures and encryption would naturally share large
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parts of optimized code (like is the case with today's elliptic-curve cryptography), however,
the situation is more complex: lattice-based signatures need larger parameters and are much
more sensitive to the selection of the noise distribution. As a result, carefully optimized
implementations of signatures and encryption schemes cannot share code without sacri�cing
performance, mainly for encryption. The BLISS signature schemes, like several earlier pro-
posals for lattice-based signatures, critically relies on Gaussian noise, which is hard to sample
e�ciently without leaking information through timing. Consequently, implementations of
BLISS have been successfully attacked via timing attacks [4, 23, 12].

6 Conclusions

A lot of post-quantum schemes have been implemented already, especially lattice-based and
code-based schemes. So far, ideal lattice-based schemes appear to be the most e�cient. How-
ever, the additional structure in the underlying lattice is still considered to be a potential
threat to its security even though no attacks have been found yet that could exploit this
structure. It would be interesting to also compare these implementations to implementations
of hash-based schemes, like XMSS or SPHINCS.
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