
A

Implementing QC-MDPC McEliece Encryption

INGO VON MAURICH, Ruhr-Universität Bochum
TOBIAS ODER, Ruhr-Universität Bochum
TIM GÜNEYSU, Ruhr-Universität Bochum

With respect to performance, asymmetric code-based cryptography based on binary Goppa codes has been

reported as a highly interesting alternative to RSA and ECC. A major drawback are still the large keys
in the range between 50-100 kByte that prevented real-world applications of code-based cryptosystems so

far. A recent proposal by Misoczki et al. showed that quasi-cyclic moderate-density parity-check (QC-

MDPC) codes can be used in McEliece encryption – reducing the public key to just 0.6 kByte to achieve
an 80-bit security level. In this article we provide optimized decoding techniques for MDPC codes and

survey several efficient implementations of the QC-MDPC McEliece cryptosystem. This includes high-

speed and lightweight architectures for reconfigurable hardware, efficient coding styles for ARM’s Cortex-
M4 microcontroller but also novel high-performance software implementations that fully employ vector

instructions. Finally, we conclude that McEliece encryption in combination with QC-MDPC codes not only

enables high-performance implementations but also allows for lightweight designs on a wide range of different
platforms.

Categories and Subject Descriptors: E.3 [DATA ENCRYPTION]: Public key cryptosystems; B.7.1 [INTE-
GRATED CIRCUITS]: Algorithms implemented in hardware

General Terms: Algorithms, Performance, Security

Additional Key Words and Phrases: McEliece, Code-based cryptography, MDPC codes, Implementation,
FPGA, Microcontroller, Software

ACM Reference Format:
ACM Trans. Embedd. Comput. Syst. V, N, Article A (January YYYY), 24 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Factoring and the discrete logarithm problem are the foundation of nearly all public
key encryption schemes used today (RSA, DH, ECC). These two classes of problems
have suffered some dents and bruises over time (e.g., the general number field sieve
and index calculus methods) but no devastating attack on conventional computing
platforms has emerged so far that is capable of efficiently solving either one of the
two. Both are presumed difficult although it seems unlikely to obtain any proofs or
reductions to NP-complete problems. Moreover, it is well-known that both problems
can be solved in polynomial time by the quantum computing algorithm due to [Shor
1997] – although a quantum computer capable of executing these attacks on large
numbers has not been developed yet.

When considering cryptography for the coming decade this is not a comfortable
situation. Cryptanalytic improvements or the advent of a powerful quantum com-
puter could instantly render the security assumptions of today’s public key encryption
schemes useless. Needless to say that alternative cryptosystems which provide (a) the
same security services at (b) a comparable level of computational efficiency and (c)
costs for storing keys are urgently required.

Author’s addresses: Ingo von Maurich, Tobias Oder, and Tim Güneysu, Ruhr-Universität Bochum, Germany,
ingo.vonmaurich@rub.de, tobias.oder@rub.de, tim.gueneysu@rub.de
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

mailto: ingo.vonmaurich@rub.de
mailto: tobias.oder@rub.de
mailto: tim.gueneysu@rub.de

A:2

Promising alternatives are currently categorized into code-based, lattice-based,
multivariate-quadratic, and hash-based cryptography. Major drawbacks of many pro-
posed cryptosystems within these categories are their low efficiency and practicability
due to large keys or complex computations compared to classical RSA and ECC cryp-
tosystems. This is particularly considered an issue for small and embedded systems
where memory and processing power are a scarce resource. Nevertheless, it was shown
that code-based cryptosystems such as the well-established proposals by [McEliece
1978] and [Niederreiter 1986] can significantly outperform classical asymmetric cryp-
tosystems on embedded systems [Eisenbarth et al. 2009; Heyse 2011; Ghosh et al.
2012; Cayrel et al. 2012] – at the cost of very large keys (50-100 kByte for 80-bit secu-
rity).

Many proposals already tried to address the issue of large keys by replacing the orig-
inally used binary Goppa codes with codes that allow more compact representations,
e.g., [Misoczki and Barreto 2009; Cayrel et al. 2012]. However, many attempts were
broken [Faugère et al. 2010; Faugère et al. 2014a; Faugère et al. 2014b] and for the
few survivors hardly any implementations are publicly available [Berger et al. 2009;
Heyse 2011]. In the context of this work, low density parity check (LDPC) codes [Gal-
lager 1962] have repeatedly been suggested as candidates for McEliece [Monico et al.
2000; Baldi et al. 2006; Baldi et al. 2007; Baldi and Chiaraluce 2007; Baldi et al. 2008].
Using quasi-cyclic LDPC codes with McEliece was suggested in [Baldi et al. 2008] but
due to the cryptanalytic results of [Monico et al. 2000] and [Baldi and Chiaraluce 2007]
in [Otmani et al. 2010], McEliece based on LDPC codes does not seem to be a secure
choice.

Current research is targeting alternative codes that allow more compact key
representations but still preserve the security properties of the cryptosystem. Re-
cently, [Misoczki et al. 2012] proposed to use moderate-density parity check (MDPC)
codes and their quasi-cyclic (QC) variant as such an alternative (published with small
changes in the parameter sets in [Misoczki et al. 2013]), claiming that a public key of
only 4801 bit can provide a level of 80 bit equivalent symmetric security. In particular,
the authors claim that (QC-)MDPC codes resist previous attacks and lack an obvi-
ous algebraic structure. Yet it needs to be investigated if all requirements of different
computing platforms can be met with McEliece based on QC-MDPC codes.

1.1. Contribution
In this work we survey and extend implementations of QC-MDPC McEliece for re-
configurable hardware, embedded microcontrollers, and software implementations for
general-purpose processors. We include high-speed FPGA implementations presented
at CHES’13 [Heyse et al. 2013], lightweight FPGA implementations presented at
DATE’14 [von Maurich and Güneysu 2014a], ARM Cortex-M4 microcontroller imple-
mentations presented at PQCrypto’14 [von Maurich and Güneysu 2014b], as well as
novel software implementations that employ vector instructions.

Furthermore, we investigate several ways to efficiently decode erroneous MDPC
codewords and propose and evaluate new optimizations that lead to faster computa-
tions, less decoding iterations, and a reduced decoding failure probability. The evalua-
tions account for the updated parameters since [Heyse et al. 2013] and include the up-
dated decoder of [Misoczki et al. 2013] that replaced fixed thresholds b = max(#upc)−δ
with an iteratively decrementing δ = δ − 1 in case of a decoding failure (repeated until
δ = 0).

1.2. Outline
In Section 2 we provide preliminaries on (QC-)MDPC codes and McEliece public key
encryption. Optimizations for decoding (QC-)MDPC codes are discussed in Section 3.
A high-performance FPGA implementation of QC-MDPC McEliece is presented in
Section 4, followed by a lightweight FPGA implementation in Section 5. Section 6
describes how to implement the scheme for embedded microcontrollers. Finally, we
present novel PC implementations using vector instructions (SSE4) in Section 7. A
conclusion is drawn in Section 8.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

2. PRELIMINARIES
This section introduces (QC-)MDPC codes and describes how the McEliece public key
encryption scheme can be instantiated with such codes. Originally, this scheme was
proposed in [Misoczki et al. 2013].

2.1. (QC-)MDPC Codes
A binary linear [n, k] error-correcting codeC of length n is a subspace of Fn

2 of dimension
k and co-dimension r = n − k. Code C can either be defined by a generator matrix or
by a parity-check matrix. The generator matrix G ∈ Fk×n

2 defines the code as C =
{mG ∈ Fn

2 |m ∈ Fk
2} and the parity-check matrix H ∈ Fr×n

2 defines the code as C = {c ∈
Fn
2 | cHT = 0r}. The syndrome s ∈ Fr

2 of a vector x ∈ Fn
2 is defined as s = HxT . It follows

that if x ∈ C then s = 0r, otherwise s 6= 0r.
If there exists some integer n0 such that every cyclic shift of a codeword c ∈ C by n0

positions results in another codeword c′ ∈ C then code C is called quasi-cyclic (QC). If
n = n0p for some integer p, then both the generator and the parity-check matrix are
composed of p×p circulant blocks. It suffices to store one row (usually the first) of each
circulant block to completely describe the matrices.

A (n, r, w)-MDPC code is a binary linear [n, k] code defined by a parity-check matrix
with constant row weight w. A (n, r, w)-QC-MDPC code is a (n, r, w)-MDPC code that
is quasi-cyclic with n = n0r.

2.2. The QC-MDPC McEliece Cryptosystem
Key generation, encryption and decryption for the McEliece cryptosystem based on a
t-error correcting (n, r, w)-QC-MDPC code are defined as follows.

Key Generation. Generate a (n, r, w)-QC-MDPC code with n = n0r. The public key is
the generator matrixG and the secret key is the parity-check matrixH. In order to gen-
erate a (n, r, w)-QC-MDPC code with n = n0r, select the first rows h0, . . . , hn0−1 ∈ Fr

2 of
the n0 parity-check matrix blocks H0, . . . ,Hn0−1 ∈ Fr×r

2 with weight
∑n0−1

i=0 wt(hi) ≤ w
uniformly at random. The parity-check matrix blocks H0, . . . ,Hn0−1 are then gener-
ated by r − 1 quasi-cyclic shifts of h0, . . . , hn0−1. The parity-check matrix H is formed
by concatenating H0, . . . ,Hn0−1. Generator matrix G = [Ik|Q] is computed from H in
row reduced echelon form by concatenating the identity matrix Ik with

Q =

(H−1n0−1 ·H0)T

(H−1n0−1 ·H1)T

· · ·
(H−1n0−1 ·Hn0−2)T

 .

Since both matrices are quasi-cyclic, it suffices to store their first rows instead of the
full matrices.

Encryption. To encrypt a message m ∈ Fk
2 , generate an error vector e ∈ Fn

2 with at
most t set bits uniformly at random and compute x = mG⊕ e.

Decryption. To decrypt a ciphertext x ∈ Fn
2 , compute mG ← ΨH(x) using a t-error

correcting (QC-)MDPC decoder ΨH . Since G is of systematic form, extract m from the
first k positions of mG.

2.3. Security of QC-MDPC McEliece
The description of McEliece based on QC-MDPC codes in Section 2.2 eliminates the
scrambling matrix S and the permutation matrix P which were used in the original
description of the McEliece cryptosystem. A CCA2 conversion (e.g., [Kobara and Imai
2001; Nojima et al. 2008]) allows G to be in systematic-form without introducing secu-
rity flaws.

[Misoczki et al. 2013] state that a quasi-cyclic structure by itself does not imply a sig-
nificant improvement for an adversary. All previous attacks on McEliece schemes are
based on the combination of a quasi-cyclic/dyadic structure with some algebraic code

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

information. The suggested parameters in [Misoczki et al. 2013] account for the best
currently known attack of [Becker et al. 2012] and also the improvements achieved
by the DOOM-attack [Sendrier 2011]. For a detailed discussion of the security of this
scheme we refer to [Misoczki et al. 2013].

[Perlner 2014] showed that cyclosymmetric (CS)-MDPC codes as proposed by [Biasi
et al. 2014] can be attacked with improved information set decoding algorithms but
Perlner also states that his attacks do not affect QC-MDPC codes.

2.4. Parameter Selection
Since small public key sizes are particularly crucial for embedded systems, we pick the
parameter sets with n0 = 2 from [Misoczki et al. 2013]. In this work we mostly focus
on an 80-bit security level, hence our implementations use the following parameters:

n0 = 2, n = 9602, r = 4801, w = 90, t = 84.

With these parameters a 4801-bit plaintext block is encoded into a 9602-bit codeword
to which t = 84 errors are added. The parity-check matrix H has constant row weight
w = 90 and consists of n0 = 2 circulant blocks. The redundant part Q of the generator
matrix G consists of n0 − 1 = 1 circulant block.

3. EFFICIENT DECODING OF (QC-)MDPC CODES
Compared to the simple operations involved in encryption (i.e., a vector-matrix multi-
plication followed by an addition), decoding is a more complex operation. As the selec-
tion of an efficient decoding algorithm is crucial to the overall decoding performance,
it is imperative to evaluate and compare all available options.

3.1. Decoding (QC-)MDPC Codes
Decoding algorithms for LDPC/MDPC codes are mainly divided into two families. The
first class (e.g., [Berlekamp et al. 1978]) offers a better error-correction capability but is
computationally more complex than the second family. Especially when handling large
codes on embedded platforms, the second family, called bit-flipping algorithms [Gal-
lager 1962], seems to be more appropriate as they do not require floating-point arith-
metics. In general, bit-flipping algorithms are based on the following principle:

(1) Compute the syndrome of the received ciphertext s = HxT .
(2) Count the number of unsatisfied parity-check equations #upc associated with each

ciphertext bit.
(3) Flip each ciphertext bit that violates more than b equations.
(4) Recompute the syndrome of the updated ciphertext.

This process is repeated until either the syndrome becomes zero or a predefined
maximum number of iterations is reached upon which a decoding error is returned.

The main difference between the bit-flipping algorithms is how they determine
threshold b. In [Gallager 1962], thresholds bi are precomputed for each iteration
i. [Huffman and Pless 2010] set the threshold as the maximum of the unsatisfied
parity-check equations b = max(#upc) and [Misoczki et al. 2013] propose to use
b = max(#upc)− δ, for some small δ to accelerate decoding.

3.2. Decoding Optimizations
In the following we propose ways to optimize the number of required decoding itera-
tions, the decoding-failure rate, and to accelerate the syndrome computation.

Improving the Syndrome Computation. All bit-flipping decoders in the literature re-
compute the syndrome after every decoding iteration to decide whether decoding was
successful or not. The cost for one syndrome computation alone can be approximated
at around twice the cost of one encoding.

We propose an optimization that can be applied to all bit-flipping decoders based
on the following observation: If the number of unsatisfied parity-check equations ex-
ceeds threshold b, the corresponding bit in the ciphertext is flipped and the syndrome

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

changes. We stress that the syndrome does not change arbitrarily, but the new syn-
drome is equal to the old syndrome accumulated with row hj of the parity check matrix
that corresponds to the flipped ciphertext bit j. By keeping track of which ciphertext
bits are flipped and by updating the syndrome accordingly, the syndrome recomputa-
tion can be omitted.

There are two ways to apply this optimization. One is to store all changes to the
syndrome in a separate register and add the changes at the end of a decoding iteration
to the syndrome. This way, the decoding behavior remains unchanged and only the
syndrome computation is accelerated. The other possibility is to directly apply the
changes to the syndrome whenever a ciphertext bit is flipped. This affects the decoding
behavior and accelerates the syndrome computation. We explore both approaches in
Section 3.3.

Improving the Decoding Failure Rate. The decoder proposed by [Gallager 1962] pre-
computes thresholds based on the code parameters. We found that its error-correcting
capability can be improved by incrementing the precomputed thresholds by a ∆ in case
of a decoding failure and restart decoding with the adapted thresholds. When restart-
ing, the initial syndrome does not need to be recomputed as it can be restored from the
first decoding try. Incrementing the precomputed thresholds upon a decoding failure
can be seen as a similar approach as taken by [Misoczki et al. 2013] when decrement-
ing δ. We achieved the best improvements when setting ∆ = 1 and after every decoding
failure increasing it to ∆ = ∆ + 1 until reaching a predefined ∆max.

3.3. Investigated Decoding Algorithms
Estimating the error-correction capability of LDPC and MDPC codes generally is non-
trivial and influenced by the choice of threshold b. Hence, we derive several bit-flipping
algorithms, evaluate their error-correcting capability and count how many iterations
are required on average to decode a codeword.

Since we are mostly targeting embedded systems, we omit variants that store coun-
ters for each ciphertext bit to compute their #upc. This would allow to skip the second
computation of #upc in some variants, but would blow up memory consumption to an
unacceptable amount of n · log2(w). The decoders under investigation are:

DecoderA is given in [Misoczki et al. 2013] and computes the syndrome, then checks
the number of unsatisfied parity-check equations once to compute max(#upc) and
then a second time to flip all codeword bits that violate ≥ max(#upc) − δ equations.
Afterwards, the syndrome is recomputed and compared to zero. If decoding is not
successful after some defined maximum of iterations, δ is reduced to δ = δ − 1 and
the decoding process is restarted. This is repeated until δ = 0 where the decoder
becomes equal to [Huffman and Pless 2010].

Decoder B is given in [Gallager 1962] and computes the syndrome, then checks
the number of unsatisfied parity-check equations once per iteration i and directly
flips the current codeword bit if #upc is larger than a precomputed threshold bi.
Afterwards, the syndrome is recomputed and compared to zero.

In order to evaluate our optimizations of the syndrome computation and the adaptive
precomputed thresholds, we derive the following decoders:

Decoder C1 computes the syndrome, then checks the number of unsatisfied parity-
check equations once to compute max(#upc) and then a second time to flip all
codeword bits that violate ≥ max(#upc)− δ equations. If a codeword bit j is flipped,
the corresponding row hj of the parity check matrix is added to a temporary
syndrome. At the end of each iteration the temporary syndrome is added to the
syndrome, resulting in the syndrome of the modified codeword without requiring a
full recomputation. In case of a decoding error, δ is decremented as in decoder A.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

Decoder C2 computes the syndrome, then checks the number of unsatisfied parity-
check equations once to compute max(#upc) and then a second time to flip all
codeword bits that violate ≥ max(#upc)− δ equations. If a codeword bit j is flipped,
the corresponding row hj of the parity check matrix is directly added to the current
syndrome. Using this method we always work with an up-to-date syndrome. In case
of a decoding error, δ is decremented as in decoder A.

Decoder C3 is similar to decoder C2 but compares the syndrome to zero after each
flipped bit and aborts the current iteration immediately once it becomes zero.

Decoder D1 is similar to decoder B with precomputed thresholds bi, but uses the
direct update of the syndrome.

Decoder D2 is similar to decoder D1 and in addition increments the precomputed
thresholds in case of a decoding failure until ∆max = 5.

Decoder D3 is similar to decoder D2 and in addition uses the same early termination
as decoder C3.

3.4. Decoding Performance Evaluation
The average number of iterations required to decode a codeword with t errors and
the decoding failure rate are listed in Table VIII in the Appendix for all decoders de-
scribed in Section 3.3 for error weights t = {84, . . . , 90}. All measurements are taken
for QC-MDPC codes with parameters n0 = 2, n = 9602, r = 4801, w = 90. A total of
1,000 random codes and 10,000 random decoding trials per code were evaluated on a
computing cluster equipped with AMD Opteron 6276 CPUs running at 2.3 GHz.

For decoders with precomputed thresholds bi we used the formula given in Ap-
pendix A of [Misoczki et al. 2012] to precompute the most suitable bi’s for every it-
eration. For decoders with b = max(#upc) − δ, we found that the smallest number of
iterations are required when starting with δ = 51. A decoding failure is returned in
case the decoder did not succeed within ten iterations.

The timings given in Table VIII should only be used to compare the decoders among
each other. The evaluation was done in software and was not particularly optimized
for speed. It was designed to keep only the generating polynomial h and not the whole
parity check matrix H in memory. All following rows of H are derived at runtime by
rotating the polynomial.

Comparing the two decoders from literature (A and B), it is evident that decoder B
requires less decoding iterations and on average just half the time to decode a erro-
neous codeword. On the other hand it encounters more decoding errors.

When comparing decoders A and C1, our acceleration of not having to recompute the
syndrome becomes apparent in the average execution time which is reduced by 20%.

Our proposal to directly update the syndrome when flipping a codeword bit has an
even stronger impact on the decoding performance as well as on the decoding failure
rate. Not only do we speed up the computation time, but we also reduce the average
number of required decoding iterations by 40% (compare decoders C1 and C2). Further-
more, the number of decoding failures is highly reduced.

Combining Gallager’s precomputed thresholds with a directly updated syndrome re-
sults in the lowest number of decoding iterations (decoders D1,D2,D3). On average
we save 2.9 iterations compared to decoder A and 0.7 iterations compared to B. Less
iterations directly relate to the execution time and combined with the new syndrome
update technique decoding is 2-4 times faster.

Adapting the precomputed thresholds upon a decoding error as proposed in Sec-
tion 3.2 leads to the best decoding failure rates among all decoders under investigation
(compare D1 with D2/D3). The average number of decoding iterations and the average
execution time increase only very slightly when using this technique. The small tim-

1In the latest version of [Misoczki et al. 2012] the authors also suggest to use δ ≈ 5 for the given parameters.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

ing advantage of decoders C3/D3 over C2/D2 is due to the immediate termination if the
syndrome becomes zero.

Another interesting observation we made for all decoders is that if a erroneous code-
word is decodable, then this is achieved after a small number of iterations. We noticed
that if a ciphertext is not decoded within 4-6 iterations, a higher number of iterations
rarely leads to a successful decoding without adapting the thresholds. Therefore, we
conclude that an early detection of decoding failures is possible.

3.5. Decoding Algorithm Selection
Throughout this work we base our implementations on decoders D1/D2. Even though
decoder D3 has a small timing advantage, it possibly introduces a timing side-channel.
Although we are not aware of a way to exploit the information of how long it takes for
the syndrome to become zero, history has shown that it is advisable to avoid leaking
any timing information, especially if it can be avoided at low cost.

Decoder D1 can be summarized by

(1) Compute the syndrome s = HxT of the received ciphertext x.
(2) Count the number of unsatisfied parity checks for every ciphertext bit.
(3) If the number of unsatisfied parity checks for a ciphertext bit exceeds a precom-

puted threshold, flip the ciphertext bit and directly update the syndrome.
(4) If s = 0r, the codeword was decoded successfully. If s 6= 0r, go to Step (2) or abort

after a defined maximum of iterations with a decoding error.

Decoder D2 can be seen as a wrapper around D1 that modifies the thresholds upon a
decoding error and then calls D1 again.

4. HIGH-PERFORMANCE QC-MDPC MCELIECE FOR RECONFIGURABLE HARDWARE
The primary goal of our first hardware design is to provide a high-performance public
key encryption core for Xilinx FPGAs.

We base our QC-MDPC McEliece decryption implementation on decoder D1/D2 in
hardware. The reason for not choosing decoder D3 is that we sequentially rotate the
codewords and secret keys in every cycle of the bit-flipping iterations. If the syndrome
becomes zero during a bit-flipping iteration and we skip further computations imme-
diately, the secret polynomials and the codewords would be misaligned. To fix this
we would have to rotate them manually into their correct position which would take
roughly the same amount of time as just letting the decoder finish the current itera-
tion. Furthermore, an early termination could leak timing information about the point
in time the syndrome became zero, which is undesirable as well.

For our evaluation of QC-MDPC in reconfigurable hardware we target Xilinx’s
Virtex-6 FPGAs. Virtex-6 devices are powerful FPGAs offering thousands of slices,
where each slice contains four 6-input lookup tables (LUT), eight flip-flops (FF), and
surrounding logic. In addition, embedded resources such as block memories (BRAM)
and digital signal processors (DSP) are available. In the following we explain our de-
sign choices and describe the implementations of QC-MDPC McEliece. Note that we
did not consider the implementation of a CCA2 conversion and true random number
generation in the scope of this work.

4.1. Design Considerations
Because of their relatively small size, the public and secret key do not have to be stored
in external memory as it was necessary in earlier FPGA implementations of McEliece
and Niederreiter using Goppa codes. Since we aim for high-performance, we store all
operands directly in FPGA logic and refrain from loading/storing them from/to internal
block memories or other external memory as this would affect performance. Reading a
single 4801-bit vector from a 32-bit BRAM interface would consume at least 151 clock
cycles. However, if maximum performance is not required, the use of BRAMs reduces
the resource consumption significantly as will be shown in Section 5.

We do not exploit the sparsity of the secret polynomials in this FPGA design. Using
a sparse representation of the secret polynomials would require to implement w =

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

90 13-bit counters, each indicating the position of a set bit in one of the two secret
polynomials. To generate the next row of the secret key, all counters would have to be
increased and in case of exceeding 4800 they would have to be reset to 0. If a bit in the
ciphertext x0 or x1 is set we would have to build a 4801-bit vector from the counters
belonging to the corresponding secret polynomial and XOR this vector to the current
syndrome. The alternative is to read out the content of each counter belonging to the
corresponding secret polynomial and flip the corresponding bit in the syndrome. These
tasks, however, are time- and/or resource-consuming in hardware.

4.2. High-Performance Implementation
We use a Virtex-6 XC6VLX240T FPGA as target device for fair comparison with pre-
vious work – although all our implementations would fit smaller devices as well. The
encryption and decryption units are equipped with a simple I/O interface. Messages
and ciphertexts are sent and received bit-by-bit to reduce the I/O overhead.

QC-MDPC Encryption. In order to implement QC-MDPC encryption we need a vec-
tor matrix multiplication to multiply message m with the public key matrix G to get a
codeword c = mG and then add an error vector with wt(e) ≤ 84 to produce the cipher-
text x = c ⊕ e. We are given a 4801-bit public key g which is the first row of matrix
G. Rotating g by one bit position yields the next row of G and so forth. Since G is of
systematic form, the first half of c is equal to m. The second half, called redundant
part, is computed as follows.

We iterate over the message bit-by-bit and XOR the current public polynomial to the
redundant part if the current message bit is set. To implement this in hardware we
require three 4801-bit registers to store the public polynomial, the message, and the
redundant part. Since only one bit of the message has to be accessed in every clock
cycle, we store the message in a circulant shift register which can be implemented
using shift register LUTs.

QC-MDPC Decryption. Decryption is performed by decoding the received ciphertext.
The plaintext can be read from the first half of the decoded codeword. We implement
bit-flipping decoder D1 as described in Section 3.5. In the first step we need to compute
the syndrome s = HxT by multiplying parity check matrix H = [H0|H1] with the
ciphertext x. Given the first 9602-bit row h = [h0|h1] of H and the 9602-bit ciphertext
x = [x0|x1] the syndrome is computed as follows. We sequentially iterate over every bit
of the ciphertext x0 and x1 in parallel and rotate h by rotating h0 and h1 accordingly.
If a bit in x0 and/or x1 is set, we XOR the current h0 and/or h1 to the intermediate
syndrome which is set to zero in the beginning. The syndrome computation is finished
after every bit of the ciphertext has been processed.

Next we need to test the syndrome for zero. We implement this as a bitwise OR
tree. Since the FPGA offers 6-input LUTs, we split the syndrome into 6-bit chunks
and compute their bitwise OR on the lowest level of the tree. The results are fed into
the next level of 6-bit LUTs which again compute the bitwise OR of the inputs. This is
repeated until we are left with a single bit that indicates if the syndrome is zero or not.
In addition, we add registers after the second layer of the tree to minimize the critical
path.

If the syndrome is zero, decryption is finished. Otherwise we have to compute the
number of unsatisfied parity check equations for each row h = [h0|h1]. We therefore
compute the Hamming weight of the bitwise AND of the syndrome and h0 and h1,
respectively. If the Hamming weight exceeds threshold bi for the current iteration i,
the corresponding bit in the ciphertext x0 and/or x1 is flipped and the syndrome is
directly updated by XORing the current secret polynomial h0 and/or h1 to it. Then h0
and h1 are rotated by one bit and the process is repeated until all rows of H have been
checked.

Since counting the number of unsatisfied parity check equations for h0 and h1 can
be done independently, we have two options for implementation. Either we compute
the parity check violations of the first and second secret polynomial iteratively or we
instantiate two Hamming weight computation units and process the polynomials in

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

Table I. Implementation results of our QC-MDPC implementations with parameters n0 = 2, n = 9602, r =
4801, w = 90, t = 84 (80-bit equivalent symmetric security) on a Xilinx Virtex-6 XC6VLX240T FPGA.

Aspect Encoder Decoder (iterative) Decoder (parallel)

FFs 14,429 (4%) 32,962 (10%) 41,714 (13%)
LUTs 9,201 (6%) 36,502 (24%) 42,274 (28%)
Slices 2,924 (7%) 10,364 (27%) 10,988 (29%)

Frequency 351.7 MHz 222.5 MHz 199.3 MHz
Time/Op 13.7 µs 125.4 µs 82.1 µs
Throughput 351.7 Mbit/s 38.3 Mbit/s 58.5 Mbit/s

Encode 4,801 cycles - -
Compute Syndrome - 4,801 cycles 4,801 cycles
Check Zero - 2 cycles 2 cycles
Flip Bits - 9,622 cycles 4,811 cycles

Overall average 4,801 cycles 27,918.9 cycles 16,363.3 cycles

parallel. The iterative version will take twice the time using less resources. We explore
both versions to evaluate this time/resource trade-off.

Computing the Hamming weight of a 4801-bit vector efficiently is a challenge of its
own. Similar to the zero comparator we split the input into 6-bit chunks and determine
their Hamming weight. We then compute the overall Hamming weight by building an
adder tree with registers on every layer to minimize the critical path. After all rows
of H have been processed, the syndrome is again compared to zero. If the syndrome is
zero, the first 4801-bit of the updated ciphertext are equal to the decoded message m
and are returned. Otherwise the bit-flipping is repeated with the next bi until either
the syndrome becomes zero or the maximum number of iterations is reached.

4.3. Implementation Results
All our results are obtained post place-and-route (PAR) for a Xilinx Virtex-6
XC6VLX240T FPGA using Xilinx ISE 14.7. For the throughput figures we assume
an I/O interface capable of these speeds is provided.

In hardware, our QC-MDPC encoder runs at 351.7 MHz and encodes a 4801-bit mes-
sage in 4801 clock cycles which results in 351.7 Mbit/s. The iterative version of our
QC-MDPC decoder runs at 222.5 MHz. Since the time to decode depends on how many
decoding iterations are needed, we calculate the average required cycles for iterative
decoding as follows. Computing the syndrome for the first time needs 4801 clock cycles
and comparing the syndrome to zero takes another 2 clock cycles. For every following
bit-flipping iteration we need 9622 plus again 2 clock cycles for checking the syndrome.
As shown in Table VIII, decoder D1 needs 2.4019 bit-flipping iterations on average.
Thus, the average cycle count for our iterative decoder is 4801 + 2 + 2.4019 · (9622 + 2) =
27918.9 clock cycles.

Our parallel decoder processes both secret polynomials in the bit-flipping step in
parallel and runs at 199.3 MHz. We calculate the average cycles as before with the
difference that every bit-flipping iteration now takes 4811 + 2 clock cycles. Thus, the
average cycle count for the parallel decoder is 4801 + 2 + 2.4019 · (4811 + 2) = 16363.3
clock cycles.

The parallel decoder operates 35% faster than the iterative version while occupying
6-26% more resources. Compared to the decoders, the encoder runs 6-9 times faster
and occupies 2-5 times less resources. Table I summarizes our results.

Using the formerly proposed decoders that work without our optimizations (i.e.,
decoders A and B) would result in much slower decryptions. Decoder A would need
4803+5.2922·(2·9622+4803) = 132064.5 cycles in an iterative and 4803+5.2922·(2·4811+
4803) = 81143.0 cycles in a parallel implementation. Decoder B saves cycles by skipping
the max(#upc) computation but would still need 4803 + 3.0936 · (9622 + 4803) = 49428.2
cycles in an iterative and 4803 + 3.0936 · (4811 + 4803) = 34544.9 cycles in a parallel
implementation.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Comparison. A comparison with previous FPGA implementations of code-based
(McEliece, Niederreiter), lattice-based (Ring-LWE, NTRU), and standard public key
encryption schemes (RSA, ECC) is given in Table IX in the Appendix. The most rele-
vant metric for comparing the performance of public key encryption schemes depends
on the application. For key exchange it is usually the required time per operation, for
data encryption (i.e., more than one block), throughput in Mbit/s is typically the more
interesting metric.

A hardware McEliece implementation based on Goppa codes including a CCA2 con-
version was presented for a Virtex5-LX110T FPGA in [Shoufan et al. 2009; Shoufan
et al. 2010]. Comparing their performance to our implementations shows the advan-
tage of QC-MDPC McEliece in both time per operation and throughput. The occupied
resources are similar to our resource requirements but in addition they need 75 block
memories. Even more important for real-world applications is the public key size. QC-
MDPC McEliece requires 0.59 kByte which is only a fraction of the 100.5 kByte public
key of [Shoufan et al. 2010].

Another McEliece co-processor was recently proposed for a Virtex5-LX110T FPGA
by [Ghosh et al. 2012]. Their design goal was to optimize the speed/area ratio while
we aim for high-performance. Regarding decoding, our implementations outperform
their work in both time/operation and throughput. However, they need fewer resources
which allows implementation on low-cost devices such as Spartan-3 FPGAs. Their pub-
lic keys have a size of 63.5 kByte which is still much larger than the 0.59 kByte of
QC-MDPC McEliece.

The Niederreiter public key scheme was implemented using Goppa codes by [Heyse
and Güneysu 2012] for a Virtex6-LX240T FPGA. Their work shows that Niederreiter
encryption can provide high-performance with a moderate amount of resources. De-
cryption is more expensive in both computation time as well as in required resources.
Niederreiter encryption is the superior choice for a minimum time per operation, but
concerning raw throughput QC-MDPC McEliece achieves better results. Furthermore,
public keys with a size of 63.5 kByte are a high storage requirement for FPGAs.

FPGA implementations of lattice-based public key encryption were proposed by [Roy
et al. 2013; Pöppelmann and Güneysu 2013] for Ring-LWE and by [Kamal and Youssef
2009] for NTRU. The Ring-LWE implementations require 1.5-2 times more time to en-
crypt a smaller plaintext but decrypts ciphertexts faster and occupies less resources
at the cost of using block RAMs and digital signal processors. If high-throughput
is required, QC-MDPC McEliece outperforms both implementations for encryption
and decryption. NTRU as implemented by [Kamal and Youssef 2009] provides high-
performance at moderate resources requirements. However, the selected parameters
for this implementation only achieve a security level of around 64 bit. Note further
that the results are reported for an outdated Virtex-E FPGA which is hardly compara-
ble to modern Virtex-5/-6 devices.

Efficient ECC hardware implementations for curves over GF (p) and GF (2m)
are [Dimitrov et al. 2006; Güneysu and Paar 2008; Rebeiro et al. 2012; Roy et al.
2012] which all yield good performance at moderate resource requirements. The most
efficient RSA hardware implementation to date was proposed in [Suzuki 2007; Suzuki
and Matsumoto 2011]. Both the time to encrypt and decrypt one block as well as the
throughput are considerably worse than QC-MDPC McEliece.

5. LIGHTWEIGHT QC-MDPC MCELIECE FOR RECONFIGURABLE HARDWARE
In this section we show how the small keys of QC-MDPC McEliece can be efficiently
stored in embedded block memories to achieve a much smaller area footprint. The im-
plementation still provides a decent speed sufficient for many applications and targets
Xilinx’s low-cost Spartan-6 family. For fair comparison we also implement our designs
on the same Virtex-6 FPGA as in Section 4.

5.1. Design Considerations
Intuitively, a small area footprint implementation of QC-MDPC McEliece should be
possible due to the comparably small keys. Instead of having to provide memory to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

store 50-100 kByte, the public key has a length of 4801 bit and the secret key requires
9602 bit. Apart from keys, additional parameters such as the message, the ciphertext,
and the syndrome, with sizes in the same range, have to be stored as well.

FPGAs in the Xilinx Spartan-6 and Virtex-6 family are equipped with dual-ported
block memories (BRAMs), each capable of storing up to 18/36 kBit of data. In each clock
cycle two separate 32-bit values can be read from two different memory addresses and
when using the READ FIRST mode, it is even possible to write data to a memory cell
in the same clock cycle after reading its content.

In our design of the encryption and decryption unit we store all inputs, outputs, keys
and intermediate values in these block memories and process them in a 32-bit fashion
to achieve a very compact structure. In the following we detail our design choices for
the encryption and decryption cores.

Encryption. During McEliece encryption we have to compute x = mG⊕e which boils
down to an accumulation of the rows of generator matrixG depending on set bits in the
message m and an addition of the error vector e. Hence, we have to hold the message
(4801 bit), one row of the generator matrix (4801 bit), and the redundant part (second
half of x, 4801 bit) in memory. The error vector e is added on-the-fly (provided through
a 32-bit interface), to avoid having to store additional 9602 bit out of which at most 84
are set. In total we have to store 3·4801 bit, fitting one 18 kBit BRAM. In addition to the
available storage space we also have to consider that only two data ports are available
for each BRAM. In a straightforward approach we would need three data ports (and
thus 2 BRAMs), one for the message, one for the public key and one for the redundant
part.

Since each message bit needs to be processed only once as opposed to the redundant
part and the public key which are each accessed 4801 times, we store all values in one
BRAM and spend a 32-bit register to hold the current 32-bit message block which we
are processing.

While the encryption unit is idle, it allows external components to access its internal
BRAM to read out the encrypted ciphertext, to write a new message and (if required) to
change the public key. When starting the encryption, it takes control of the BRAM and
allows outside components to access the BRAM only after the encryption is finished.

Decryption. For decryption we have to store the secret key (9602 bit), the received
ciphertext (9602 bit), and the syndrome (4801 bit). Decoding is performed in-place, i.e.,
after the decoder finishes, the first 4801 bit of the decoded ciphertext are equal to the
decrypted message. The secret key and the ciphertext consist of two separate 4801-bit
vectors that can either be processed in parallel or iteratively. Since decryption is more
complex than encryption we process them in parallel to not further widening the gap
between encryption and decryption performance.

Concerning memory, two 18-kBit BRAMs suffice to store all values but again we
have to keep in mind that each BRAM only offers two data ports. Since the secret
key and the ciphertext consist of two separate 4801-bit vectors that are processed in
parallel, this requires four data ports plus one data port for the syndrome. Trading
performance at the cost of few additional resources, we spend one additional 18-kBit
BRAM to store the syndrome.

When decoding, the first step is the syndrome computation. Depending on set cipher-
text bits, rows of the two parity-check matrix blocks are accumulated. For comparing
the syndrome to zero, we compute the OR of all 32-bit blocks of the syndrome. If the
result is zero, the syndrome is zero, otherwise it is not. For counting the number of un-
satisfied parity-check equations we compute the Hamming weight of the binary AND
of the syndrome and the two parts of the secret key, again in 32-bit steps.

While the decryption unit idles, it grants access to the BRAM containing the cipher-
text so that external components can write new ciphertexts and read out decrypted
plaintexts. We do not allow external components to access the secret key in our design.
Depending on the application it might be desired to be able to at least write a new
secret key. This can be easily accomplished in our design by forwarding the required
control signals of the secret key BRAM to external components.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

5.2. Lightweight Implementation
Next we detail our lightweight implementations of QC-MDPC McEliece en- and de-
cryption following the design decisions as explained above. Note that the implementa-
tion of a CCA2 conversion as well as the investigation of a secure implementation of a
true random number generator are out of the scope of this work.

Encryption. Encryption usually starts with setting the redundant part to zero, then
the rows of the generator matrix are accumulated depending on the message. In the
end an error vector is added to the result. In our implementation we combine resetting
the redundant part and adding the error by directly loading the second half of the
error vector into the redundant part and starting the accumulation of the rows of G to
it afterwards. We rely on being provided a uniformly distributed error vector of weight
at most t = 84 through a 32-bit interface.

The most performance-critical operation of the encoder is the rotation of 4801-bit
vectors. More precisely, the first row g of the generator matrix has to be rotated 4801
times to iterate over all rows of G. In a BRAM-based implementation, each data port
can only access 32 bit per clock cycle. Hence, rotating a 4801-bit vector requires to load
152 32-bit cells2, rotating them by one bit, and storing the result.

In a straightforward approach with one data port, two cycles would be needed to
rotate each 32-bit block. One cycle to load the value and rotate it, and another cycle to
store the result. If two data ports would be used, one port could be used to read blocks
and the second port could be used to write blocks delayed by one clock cycle. This
would require one clock cycles for rotating each 32-bit block plus a small overhead
for loading the least significant bit and introducing the delay required for storing the
results. However, by using this approach we encounter a problem when having to add
the current row of the generator matrix to the redundant part. Since both data ports
are already occupied, we are not able to load the redundant part and XOR the current
row to it without spending additional clock cycles.

Instead we implement the following approach that allows to efficiently rotate g and
XOR it to the redundant part at the same time if necessary with only two data ports.
As described above, Xilinx BRAMs support the READ FIRST mode which allows to
first read the content of a memory cell and then to overwrite the cell with new data
in the same clock cycle. After loading the least significant bit, we start reading the
first memory cell of g. In the next clock cycle we activate the write signal and store
the rotated content of the first cell to the next cell while loading its content. Hence
by applying this trick we additionally introduce a rotation of the memory cells. The
rotated 32-bit value that was previously stored in memory cell 0 is stored to memory
cell 1, the rotated value of memory cell 1 is stored in cell 2 and so on. This requires to
wrap the addresses around after accessing the last memory cell and also to keep track
of which memory cell holds the beginning of the rotated vector. After one rotation
the first 32 bit are stored in memory cell 1 instead of memory cell 0, after the second
rotation the first 32 bit are stored in cell 2 and so on. This trick allows us to efficiently
rotate a 4801-bit vector using just 153 clock cycles instead of nearly twice as many
while using only one data port of the BRAM.

We apply the same trick to the redundant part, even though it does not need to be
rotated. This allows us to load a 32-bit block of the redundant part, XOR the corre-
sponding 32-bit block of g to it if the current message bit is set, and store the result
while rotating g at the same time. Both operations can work in parallel since they only
need one data port each.

After 32 rotations of row g, we XOR the current 32-bit message block with its corre-
sponding 32-bit block of the error vector and store the result. Then we load the next
32-bit message block and store it to a 32-bit register. After processing all message bits
the resulting ciphertext can be read out from the BRAM by external components.

2Rotating a 4801-bit vector that is stored in 32-bit cells requires d4801/32e = 151 plus one additional load
for extracting the least significant bit.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Table II. Resource consumption of our lightweight QC-MDPC McEliece implementations on a low-cost Xilinx
Spartan-6 XC6SLX4 and on a high-end Xilinx Virtex-6 XC6VLX240T FPGA. All results are obtained post
place-and-route.

Virtex-6 XC6VLX240T Spartan-6 XC6SLX4
Aspect Encryption Decryption Encryption Decryption

FFs 120 412 119 413
LUTs 224 568 226 605
Slices 68 148 64 159
BRAM 1 3 1 3

Frequency 334 MHz 318 MHz 213 MHz 186 MHz
Time/Op 2.2 ms 13.4 ms 3.4 ms 23.0 ms

Decryption. Decryption first computes the syndrome of the received ciphertext. After
resetting the syndrome, we rotate both secret keys using the same trick as for rotating
the public key when encrypting. Similarly, we apply the same trick to the syndrome
that we applied to the redundant part. The syndrome itself does not need to be rotated,
but when adding one or even both rows of the secret key to the syndrome we benefit
from the same performance gains as when adding one row of the generator matrix to
the redundant part. Due to the similar structure of the syndrome computation and the
encoding of a message both take nearly the same amount of clock cycles to finish. If
we would not process both parts of the secret key and the ciphertext in parallel the
computation would take twice as long.

Testing the syndrome for zero is implemented by computing the binary OR of all
32-bit blocks of the syndrome and comparing the results to zero. To count the number
of unsatisfied parity-check equations for a ciphertext bit, we load 32-bit blocks of the
syndrome and of the current rows of the parity-check matrix blocks. Then we compute
the Hamming weight of their binary AND to determine if the corresponding ciphertext
bits have to be inverted. The Hamming weight is computed by splitting the 32-bit
AND result into five 6-bit chunks and one 2-bit chunk, looking up their Hamming
weight from tables, and accumulating the results. We then proceed with the next 32-
bit blocks and compute the overall Hamming weights for both processed ciphertext
bits in parallel.

Next we load the current rows of the parity-check matrix blocks again and rotate
them using our previously described rotation technique. If one or both ciphertext bits
caused more than bi unsatisfied parity-check equations for the current iteration i, we
invert the ciphertext bit(s) and XOR one or both rows of the parity-check matrix block
to the syndrome while rotating them.

After processing 2 · 32 ciphertext bits, we store both modified parts of the ciphertext
back to the BRAM and load the next 32-bit blocks to two 32-bit registers. After pro-
cessing the last ciphertext bit, we again compute the binary OR of all 32-bit blocks of
the syndrome and check if the result is zero. If it is we notify external components that
the plaintext can now be read out, otherwise we repeat the bit-flipping step or signal
a decoding error if the maximum number of iterations is exceeded.

5.3. Implementation Results
In the following we present our implementation results in terms of occupied resources
and required cycles for Xilinx FPGAs. Furthermore, we compare our results with pre-
vious work.

The implementation results are obtained post place-and-route (PAR) and are listed
in Table II for a low-cost Xilinx Spartan-6 XC6SLX4 (the smallest device in the
Spartan-6 family) and for a high-end Xilinx Virtex-6 XC6VLX240T FPGA using Xilinx
ISE 14.7. The encoder occupies 64-68 slices and the decoder 148-159 slices on these
devices. As detailed in Section 5.1, the encoder uses one BRAM and the decoder uses
three BRAMs to store inputs, outputs, and intermediate values. While the resource
consumption is similar on both devices, the design naturally runs at a higher clock
frequency on the Virtex-6.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Table III. Required cycles for our lightweight QC-MDPC McEliece en-/decryption cores.

Encoder Operations Cycles Decoder Operations Cycles

Load error vector 151 Reset syndrome 151
Rotate PK & XOR 153 Compute syndrome 734,704
Store & load message 3 Check syndrome 151

Correct ciphertext bits 1,474,511

Overall average 735,000 Overall average 4,274,000

To encrypt a message, the following cycle counts are required to perform each op-
eration (cf. Table III): First we need 151 cycles to load the second half of the error
vector into the redundant part. Rotating g and XORing it to the redundant part if the
current message bit is set takes 153 cycles and has to be repeated 4801 times. After
processing 32 message bits we have to load the next message block and store the pre-
vious message XOR the corresponding 32 bits of the error vector which takes 3 cycles
and has to be repeated 151 times. Last but not least we have to store the least sig-
nificant bit of the redundant part which takes one additional cycle. Overall we need
151 + 4801 · 153 + 151 · 3 + 1 = 735, 158 cycles to encrypt a 4801-bit message block. On
the Virtex-6 FPGA this translates to 2.2 ms and on the Spartan-6 FPGA to 3.4 ms.

Decryption of a ciphertext requires the following cycles for each operation: Reset-
ting the syndrome is finished after 151 cycles. Computing the syndrome is basically
the same operation as encoding a message. It takes 153 cycles to rotate both parts
of the secret key by one bit and optionally XORing them to the syndrome, which is
again repeated 4801 times. Loading the next two 32-bit ciphertext blocks requires one
cycle and is repeated 151 times. Overall, we need 4801 · 153 + 151 = 734, 704 cycles
to compute the syndrome. Comparing the syndrome to zero takes 151 cycles. Com-
puting the Hamming weight of the binary AND of the syndrome and the two current
rows of the parity-check matrix blocks (i.e., counting the number of unsatisfied parity-
check equations) takes 154 cycles and is repeated 4801 times. Loading the next two
32-bit ciphertext blocks takes 2 cycles and is repeated 151 times. After computing the
Hamming weight, generating the next row of the parity-check matrix takes 153 cycles,
which is also repeated 4801 times. Storing modified ciphertext blocks takes one cycle
and is done 151 times before the next two 32-bit ciphertext blocks are loaded. Finally,
the syndrome is again compared to zero. In summary, one iteration of the bit-flipping
step takes 151 · 2 + 4801 · 154 + 4801 · 153 + 151 + 151 = 1, 474, 511 cycles. On average
2.4 decoding iterations are needed for successful decoding, hence our overall average
cycle count is 151 + 734, 704 + 151 + 2.4 · 1, 474, 511 = 4, 273, 832 cycles. On the Virtex-6
FPGA this translates to 13.4 ms and on the Spartan-6 FPGA to 23.0 ms for decrypting
one message block.

Comparison. A comparison with our high-performance implementation of QC-
MDPC McEliece, other lightweight code-based FPGA implementations as well as
lightweight Ring-LWE and RSA implementations is presented in Table IV.

A fair comparison between the high-performance and the lightweight QC-MDPC
McEliece implementations is difficult since the implementations aim for very different
goals. When comparing the occupied resources it is fair to say that the lightweight
goal was achieved by requiring less than 250 slices and four BRAMs for a combined
en-/decryption core instead of using around 13,000 slices. Hence it is possible to use
much smaller and inexpensive devices. Of course the lightweight implementation is
beaten in terms of time per operation, but still provides timings in the range of a few
milliseconds which seems reasonable for a large number of real-world applications.

Previous lightweight McEliece implementations are based on Goppa codes [Eisen-
barth et al. 2009; Ghosh et al. 2012]. The first lightweight implementation of a code-
based cryptosystem (“MicroEliece”) was proposed for a Xilinx Spartan-3 FPGA. Since
the storage capacity of the FPGA did not suffice, external memory had to be used to
store the public key. More recently, [Ghosh et al. 2012] proposed a lightweight McEliece
decryption co-processor for Xilinx Spartan-3 and Virtex-5 FPGAs. When comparing

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Table IV. Performance comparison of our lightweight QC-MDPC McEliece (McE) implementations with other
lightweight public key encryption implementations. 1 Additionally uses 1 DSP48.

Scheme Platform Time/Op FFs LUTs Slices BRAM

Lightweight McE (enc) XC6SLX4 3.4 ms 119 226 64 1
Lightweight McE (dec) XC6SLX4 23.0 ms 413 605 159 3
Lightweight McE (enc) XC6VLX240T 2.2 ms 120 224 68 1
Lightweight McE (dec) XC6VLX240T 13.4 ms 412 568 148 3

High-performance McE (enc) XC6VLX240T 13.7 µs 14,429 9,201 2,924 0
High-performance McE (dec) XC6VLX240T 125.4 µs 32,974 36,554 10,271 0

[Eisenbarth et al. 2009] (enc) XC3S1400AN 2.2 ms 804 1,044 668 3
[Eisenbarth et al. 2009] (dec) XC3S1400AN 21.6 ms 8,977 22,034 11,218 20
[Ghosh et al. 2012] (dec) XC5VLX110T 0.5 ms n/a n/a 1,385 5
[Ghosh et al. 2012] (dec) XC3S1400AN 1.02 ms 2,505 4,878 2,979 5

[Pöppelmann and Güneysu 2014] (enc) XC6SLX9 0.9 ms 238 317 95 21

[Pöppelmann and Güneysu 2014] (dec) XC6SLX9 0.4 ms 87 112 32 11

RSA [Helion 2010] Spartan6-3 345 ms n/a n/a 135 1

previous work to our results it is important to keep in mind that even though all works
implement McEliece, they are based on different codes. Decoding Goppa codes requires
very different decoders as for (QC-)MDPC codes.

Compared to [Eisenbarth et al. 2009], our implementation uses less resources and
performs at about the same speed. However, a direct comparison of the consumed
resources is difficult since Spartan-3 FPGAs only offer 4-input LUTs as opposed to
Spartan-6/Virtex-6 devices which offer 6-input LUTs. The structure of a slice has
changed as well, newer Xilinx FPGAs offer more resources with each slice. But even
when reducing the LUT and slice count of MicroEliece by 50%, our implementations
are still smaller, especially when comparing decryption.

Compared to [Ghosh et al. 2012], we need around nine times less slices in our imple-
mentation but also more time to decrypt. The resource consumption can be compared
more or less directly since Virtex-5 and Virtex-6 FPGAs offer similar resources.

Besides resource consumption and efficiency an important criterion for real-world
applications is the size of the public key. Here, the quasi-cyclic structure of QC-MDPC
codes shows its advantage by reducing the public key from 63.5 kByte [Ghosh et al.
2012] or even 437.8 kByte [Eisenbarth et al. 2009] to just 0.6 kByte.

Recently, [Pöppelmann and Güneysu 2014] presented a lightweight implementation
of the lattice-based Ring-LWE scheme for a Spartan-6 XC6SLX9. Their encryption core
requires around 50% more resources but takes less time for one operation. As Ring-
LWE decryption does not require complex decoders, its implementation requires less
resources and less time to complete.

A lightweight modular exponentiation core capable of performing 1024-bit RSA op-
erations (TINY32) is offered by [Helion 2010]. They report a time/operation of 345 ms
at a resource consumption of 135 slices plus one 18 kBit BRAM on a Spartan-6 device.

6. QC-MDPC MCELIECE FOR EMBEDDED MICROCONTROLLERS
In this section we present QC-MDPC McEliece for embedded microcontrollers, with a
focus on ARM’s Cortex-M4. Our implementations are carefully optimized using a mix
of C and Thumb2 assembly and we paid particular attention to make their program
flow as well as their execution time independent of secret data.

6.1. Target Platform
The STM32F4 Discovery board is equipped with a STM32F407 microcontroller which
features a 32-bit ARM Cortex-M4F CPU with 1 Mbyte flash memory, 192 Kbytes SRAM
and a maximum clock frequency of 168 MHz. It sells at roughly the same price of USD
5-10 as the popular 8-bit AVR microcontroller ATxmega256A3, depending on the or-
dered quantity. Instead of an 8-bit architecture it offers 32-bit, can be clocked at higher
frequencies, offers more flash and SRAM storage, comes with DSP and floating point

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

instructions, provides communication interfaces such as CAN-, USB-/ and Ethernet
controllers, and has a built-in true random number generator (TRNG).

6.2. Implementing QC-MDPC McEliece for the STM32F407
Our implementations of QC-MDPC McEliece for the STM32F407 microcontroller
cover key generation, encryption, and decryption. Our goal is to achieve a reasonable
time/memory trade-off.

Key Generation. Secret key generation starts by selecting a first row candidate for
Hn0−1 with w/n0 set bits. We generate indices in the range of 0 ≤ i ≤ r − 1 using the
microcontroller’s TRNG. These indices determine the position of set bits in Hn0−1.

The public key computation requires that H−1n0−1 exists. Hence, we apply the ex-
tended Euclidean algorithm to the first row candidate and xr − 1. If the inverse does
not exist, we repeat this step and select a new first row candidate for Hn0−1. If the
inverse exists, the first row of Hn0−1 is converted into a sparse representation where
w/n0 counters point to the positions of set bits and store them as part of the secret key.

Next, we randomly select first rows for H0, . . . ,Hn0−2 as described for Hn0−1, convert
and store them in their sparse representation, and compute (H−1n0−1Hi)

T , 0 ≤ i ≤ n0−2.
Note, since the matrices involved are quasi-cyclic, the result is quasi-cyclic as well so it
suffices to multiply the first rows of H−1n0−1 and Hi. The resulting rows of the generator
matrix are not sparse and hence they are stored in full length.

Encryption. Encryption is divided into encoding a message and adding an error of
weight t to the resulting codeword. To compute the redundant part of the codeword,
set bits in message m select rows of the generator matrix G that have to be XORed.
Starting from the first row of the generator matrix, we parse m bit-by-bit and decide
whether or not to XOR the current row to the redundant part. Then, the next row is
generated by rotating it one bit to the right and the following message bit is processed.
This implementation approach was originally introduced in [Heyse et al. 2013].

One has to be careful, however, to not introduce timing dependencies on secret data.
For public key encryption the message bits are the secret data and hence the deci-
sion of whether or not to XOR a row of matrix G is dependent on secret information.
Our proposed countermeasure is to always perform an addition to the redundant part,
independent of whether the corresponding message bit is set. Of course we cannot sim-
ply accumulate all rows of the generator matrix, as this would map all messages to the
same codeword.

Since the addition of a row of G to the redundant part is done in 32-bit steps on
the ARM microcontroller, we use the current message bit mi to compute a 32-bit mask
(0−mi). For mi = 0 the mask is zero, otherwise all 32 bits of the mask are set. Before
the 32-bit blocks of the current row of G are XORed to the redundant part, we compute
the bitwise AND of them with the mask. This either results in the current row being
added if the message bit is set, or in zero being added if the message bit was not set.
This leads to a runtime that is independent of the message. Furthermore, as the same
instructions are executed for set and cleared message bits, a constant program flow is
achieved.

After computing the redundant part of the codeword, we append it to the message
and generate t random indicies at which we flip bits (i.e., the error addition) to trans-
form the codeword into a ciphertext. We retrieve the required randomness directly
from the microcontroller’s internal TRNG. If a microcontroller does not provide a ded-
icated TRNG, a physical source of entropy can be usually obtained by querying the
noise from the least-significant bits of an open-ended or internal ADC, or by using
clock-jitter [Hlavac et al. 2010]. This entropy can be then regularly mixed into a com-
mon PRNG/conditioning function.

Decryption. For decrypting ciphertexts we implement decoder D2 as described in
Section 3.5. In a first step we compute the syndrome, which is a similar operation
to encoding a codeword, except for the fact that the secret key is stored in a sparse
representation. The ciphertext is split into n0 parts that correspond to the n0 blocks

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

of the parity-check matrix. The ciphertext blocks are processed bit-by-bit in parallel.
If a ciphertext bit is set, the corresponding row of the parity-check matrix is added to
the syndrome otherwise the syndrome remains unchanged. The following rows of the
parity-check matrix blocks are generated in the sparse representation by incrementing
the counters. If a counter overflows (i.e., the counter value equals r), the counter has
to be reset to zero.

Again, we want to avoid timing dependencies on secret data. Checking a counter for
an overflow and resetting it depending on its occurrence would leak information about
set bits in the secret key. A possible countermeasure would be to simply refrain from
rotating the rows of the secret key and instead to store the full parity-check matrix
in memory. However, storing H would require 2 × (4801 × 4801) bit = 5.5 Mbyte. Since
this is infeasible on the platform under investigation, we are left with protecting the
rotation of a row of the secret key.

To protect the secret key rotation, we still use counters that point to set bits in the
secret key. After incrementing a counter, we check for an overflow by comparing the
value to the maximum r. We load the negative flag N of the program status register
and use it to compute a 32-bit mask (0− N). Then we compute the bitwise AND of the
counter value and the mask, before we store the result. If the counter value is smaller
than r, the N flag is set and the incremented counter value is stored. If the counter
value is equal to r, the N flag is zero and the counter is reset. This removes the timing
dependency of an overflowed counter and uses the same program flow independent of
whether a counter is reset or not.

If the computed syndrome s 6= 0r we proceed by counting how many parity-check
equations are violated by a codeword bit. This is given by the number of bits that
are set in both the syndrome and the row of the parity-check matrix block that cor-
responds to the ciphertext bit. If the number of unsatisfied parity-check equations
exceeds threshold bi, then the ciphertext bit is flipped and the row of the parity-check
matrix block is added to the syndrome.

If the syndrome is zero after a decoding round, decoding was successful. Otherwise
we continue with further rounds until we reach a defined maximum number of itera-
tions upon which a decoding error is issued. All these steps are coded such that there
is a constant instruction flow without timing dependencies on secret data.

The runtime of decoder ct3 is completely constant-time, independent of the cipher-
text and secret key. Version ct2 accelerates the first syndrome computation by skipping
accumulations if ciphertext bits are not set. Version ct1 of the decoder tests the syn-
drome for zero after each decoding iteration and exits if decoding was successful before
reaching the maximum iterations.

6.3. Implementation Results
The results of our implementations are listed in Table V. Encrypting a messages takes
42 ms and decrypting a ciphertext takes 251-558 ms. Key generation is finished after
884 ms on average, but usually key generation performance is not an issue on small
embedded devices since they generate few (if even more than one) key pair(s) in their
lifespan. The combined code of key generation, encryption, and decryption, requires
5.7 kByte (0.6%) flash memory and 2.7 kByte (1.4%) SRAM, including the public and
the secret key. Since w << r for all QC-MDPC parameter sets, storing the secret key in
a sparse representation saves memory and at the same time allows fast row rotations.
For the 80-bit parameter set with n0 = 2 only w = 90 16-bit counters are needed to
store the secret key (1440 bit instead of 9602 bit).

Compared to the QC-MDPC McEliece implementation in [Heyse et al. 2013], our
encryption is 20 times faster and includes a true random error addition. Decryption
performance is improved to a much more realistic 251-558 ms instead of 2.7 s. Further-
more, our implementations are protected against timing and simple power analysis
attacks. Other McEliece microcontroller implementations based on Goppa [Eisenbarth
et al. 2009; Heyse 2011] and Srivastava codes [Cayrel et al. 2012] have much higher
memory requirements and all need more time per operation. Microcontroller imple-
mentations of RSA and ECC were presented for an ATmega128 microcontroller by [Liu

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Table V. Results of our microcontroller implementations of the QC-MDPC McEliece (McE) cryptosystem. The
compiler optimization level was set to -O2 which results in the best code-size/performance trade-off. 1Flash
and SRAM memory requirements are reported for a combined implementation of key generation, encryption,
and decryption.

Scheme Platform SRAM Flash Cycles/Op Time/Op

This work [enc, ct] STM32F407 2.7 kByte1 5.7 kByte1 7,018,493 42 ms
This work [dec, ct1] STM32F407 2.7 kByte1 5.7 kByte1 42,129,589 251 ms
This work [dec, ct2] STM32F407 2.7 kByte1 5.7 kByte1 85,571,555 509 ms
This work [dec, ct3] STM32F407 2.7 kByte1 5.7 kByte1 93,745,754 558 ms

This work [keygen] STM32F407 2.7 kByte1 5.7 kByte1 148,576,008 884 ms

McE [enc] [Heyse et al. 2013] ATxmega256 606 Byte 5.5 kByte 26,767,463 836 ms
McE [dec] [Heyse et al. 2013] ATxmega256 198 Byte 2.2 kByte 86,874,388 2.71 s

McE [enc] [Eisenbarth et al. 2009] ATxmega256 512 Byte 438 kByte 14,406,080 450 ms
McE [dec] [Eisenbarth et al. 2009] ATxmega256 12 kByte 130.4 kByte 19,751,094 617 ms

McE [enc] [Heyse 2011] ATxmega256 3.5 kByte 11 kByte 6,358,400 199 ms
McE [dec] [Heyse 2011] ATxmega256 8.6 kByte 156 kByte 33,536,000 1.1 s

McE [enc] [Cayrel et al. 2012] ATxmega256 - - 4,171,734 130 ms
McE [dec] [Cayrel et al. 2012] ATxmega256 - - 14,497,587 453 ms

ECC-P160 [Liu et al. 2014] ATmega128 556 Byte 14.7 kByte 9,044,084 1.22 s

RSA-1024 [Liu et al. 2010] ATmega128 - - 75,680,000 10.3 s

et al. 2010; Liu et al. 2014]. ECC is somewhat competitive in terms of cycles, but takes
more time due to the slower platform. RSA is clearly beaten by QC-MDPC McEliece in
terms of performance.

Please note that the microarchitecture of the STM32F407 and the AT(x)mega are
completely different – but similarly expensive in terms of cost (which is usually a most
relevant factor for practical applications).

7. QC-MDPC MCELIECE ON GENERAL-PURPOSE PROCESSORS
In this section we describe our vectorized implementation of the QC-MDPC McEliece
encryption scheme for general-purpose processors. The target platform is an Intel Core
i7-4770 running at 3.40 GHz. The CPU is based on the Haswell microarchitecture and
provides a true random number generator that complies with the standards NIST
SP800-90A, B, and C, FIPS-140-2, and ANSI X9.82 [Intel 2014]. The TRNG has a hard-
ware entropy source that samples thermal noise. The output of this entropy source is
used as input for an AES-CBC-MAC operation that outputs the seed of a deterministic
random bit generator (DRBG). When calling the RDRAND instruction, 16, 32 or 64
random bits are provided by the DRBG.

As our software implementation supports arbitrary parameter sets, we can easily
switch from the 80-bit security parameters to parameters that are designed for 128-
bit/256-bit security.

7.1. Vectorized Implementation of QC-MDPC McEliece
We provide a vectorized implementation for modern processors that support the
Streaming SIMD Extensions 4 (SSE4) and an unvectorized implementation that can
be run on older systems. Our implementations are written in C, yet we use several
intrinsic functions to access SSE4 instructions in our vectorized implementation. The
following description focuses on the vectorization.

While SSE4 features 128-bit integer vectors, Haswell processors also support the
AVX2 instruction set that is capable of handling 256-bit integer vectors. However, to
ensure a wider compatibility of our vectorized implementation, we decided to apply
SSE4. Additionally, we exploit the carry-less multiplication instruction CLMUL to ac-
celerate the implementation. This instruction operates on 128-bit vectors and hence
would imply expensive conversions if our implementation would be based on 256-bit
vectors.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

Key Generation. Keys are generated similarly as for the microcontroller implemen-
tation. We generate a random, invertible first row of Hn0−1 = H1 with w/n0 set bits, a
random first row of H0 and the corresponding first row of G. Since a PC provides more
memory than a microcontroller, we do not use a compressed, sparse representation for
the secret key. All polynomials are stored in full length and we also generate the com-
plete matrix H to avoid polynomial shifts during decryption. Since the public matrix
G has to be transmitted to a communication partner, we do not expand G yet.

Encryption. Encryption of a message starts by first expanding public key G. This
speeds up the actual encryption and is done only once. All following encryptions under
the same public key reuse the already expanded matrix. In contrast to our other imple-
mentations, we rotate the first row by 64 positions and store the result. We repeat this
step dN/64e times and end up with a matrix 64 times smaller than a fully expanded
matrix.

When multiplying the message by the public key, the omitted intermediate rota-
tions are performed implicitly by using the CLMUL instruction that performs a carryless
multiplication of two 64-bit values and returns the 128-bit result. By replacing the
bit-by-bit checks with this instruction and working with 128-bit vectors, we are able to
accelerate the vector-matrix multiplication by 25 times compared to the unvectorized
implementation of this subroutine. Additionally, using the CLMUL instruction avoids the
previously discussed timing dependency on secret data as the carry-less multiplication
is always executed and has a constant reciprocal throughput.

Afterwards, we append the computed redundant part to the message and add a
truly random error vector of weight t. We generate a 64-bit random number using the
RDRAND instruction and derive four 14-bit, four 15-bit or three 17-bit indexes for the
80/128/256-bit parameter sets, respectively. If the resulting index i lies in the range
0 ≤ i < n, we flip the codeword bit at index i and repeat until t bits are flipped.

Decryption. Decoder D2 is used in this implementation. We first compute the syn-
drome of the ciphertext. Similar to the multiplication of the plaintext by the public
key, we employ the CLMUL instruction to avoid bit-by-bit checks. Since the secret key
matrix has been generated by rotating two independent polynomials, the two halves
of H are stored separately. Therefore, we have to pay attention to the center element
of the ciphertext. As we are processing 64 bits of the ciphertext at once, the center ele-
ment has to be multiplied with both, H0 and H1. While multiplying the center element
byH0, the bits of the center element that will be multiplied byH1 have to be set to zero,
and vice versa. Compared to the unvectorized implementation of the syndrome com-
putation, we achieve a 44 times better performance with this approach. This even ex-
ceeds the speed-up with respect to the multiplication during the encryption, since the
unvectorized implementation computes the syndrome using a sparse and compressed
representation of H.

The plaintext is recovered similarly to the microcontroller implementation. We check
whether the syndrome is zero or not. If not, we identify the number of violated parity
check equations for each ciphertext bit. For this purpose, we employ the POPCNT in-
struction that returns the Hamming weight of a 64-bit word. The number of violated
equations is then compared to a precomputed threshold. If it exceeds the threshold, we
flip the responsible bit and the corresponding row of the secret key matrix is added to
the syndrome. In case the syndrome does not reach zero after reaching the maximum
number of decoding iterations, we slightly increase the thresholds and start another
decryption attempt. Note, that there are no table look-ups depending on secret data in
our implementation to reduce the risk of cache timing attacks.

7.2. Implementation Results
Table VI lists the cycle counts of our vectorized and non-vectorized implementations
for parameter sets designed for 80/128/256-bit equivalent symmetric security.

As expected, the vectorized implementation turns out to be significantly faster than
the non-vectorized implementation. Key generation is accelerated by a factor of 2, en-
cryption is nearly 10 times faster and decryption is 3 times faster. The cycle counts nat-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Table VI. Cycle counts of our QC-MDPC McEliece implementations on an Intel Core i7-4770 CPU for 100,000
runs en-/decryption and 1,000 runs for the key generation. The compiler optimization level was set to -O3
since we aim to optimize our implementation for speed. TurboBoost and hyper-threading were disabled
during measurements.

Operation 80-bit non-vectorized 80-bit SSE4 128-bit SSE4 256-bit SSE4

Key Generation 32,139,668 14,234,347 54,379,733 526,096,652
Encryption 292,432 34,123 106,871 971,605
Decryption 10,114,096 3,104,624 18,825,103 193,922,410

Multiply by public key 267,913 10,742 44,114 478,152
Add Error 2,528 11,761 18,837 50,114
Compute Syndrome 1,178,512 26,654 95,144 959,382
Rotate left by one position 586 115 196 562
Rotate left sparse 288 - - -
AND-and-Hamming weight 3,723 123 233 735

Table VII. Comparison of our QC-MDPC McEliece PC implementation with other McEliece, RSA, and NTRU
implementations. We list the required cycles to en-/decrypt one block as well as the required cycles/byte. ∗ eBACS
reports cycles for en-/decrypting 59 bytes. We scaled the cycles/byte metric to the full block size.

Implementation Platform Security Enc. Dec. Enc. Dec. Block Size
[bit] [cycles] [cycles] [cyc./byte] [cyc./byte] [bit]

This work Haswell 80 34,123 3,104,624 56.86 5,173 4801
This work Haswell 128 106,871 18,825,103 86.74 15,278 9857
This work Haswell 256 971,605 193,922,410 237.19 47,340 32771

[Bernstein et al. 2013] Ivy Bridge 81 - 24,051 - 109.88 1751
[Bernstein et al. 2013] Ivy Bridge 129 - 60,493 - 134.27 3604
[Bernstein et al. 2013] Ivy Bridge 263 - 306,102 - 452.40 5413

mceliece [eBACS 2014] Haswell 83 63,522 1,139,808 300∗ 5,376∗ 1696
ronald1024 [eBACS 2014] Haswell 80 45,452 1,288,172 355∗ 10,064∗ 1024
ronald3072 [eBACS 2014] Haswell 128 165,832 15,181,669 432∗ 39,536∗ 3072
ntruees787ep1 [eBACS 2014] Haswell 256 322,240 513,852 4,958∗ 7,905∗ 520

urally rise for higher security levels. Increasing the security level from 80 to 128 bits
incurs a performance penalty of a factor of 3-6. For a 256-bit security level, the cycle
counts are about 10 times higher than for the 128-bit security level. The vectorization
speeds up almost all subroutines, except for the error addition which is slower since it
uses true random number generation.

Table VII compares our work with implementations of other public key cryptosys-
tems on similar platforms. The optimized implementation of the KEM/DEM scheme
based on the Niederreiter cryptosystem with Goppa codes by [Bernstein et al. 2013]
is able to decrypt faster compared to our QC-MDPC implementation. Unfortunately,
their cycle counts for key generation and encryption are not reported. For real-world
applications, public key sizes still play an important role since they need to be trans-
ferred to remote parties and are stored in embedded devices. At a security level of 128-
bit, QC-MDPC McEliece has public keys of size 1.2 kByte while the Goppa code-based
Niederreiter implemented by [Bernstein et al. 2013] has a public key of 221 kByte.

The eBACS benchmarking project [eBACS 2014] contains a McEliece implementa-
tion by [Biswas and Sendrier 2008] (mceliece), RSA implementations (ronald1024,
ronald3072) and an NTRU implementation (ntruees787ep1). Compared to the binary
Goppa code McEliece implementation by [Biswas and Sendrier 2008], our implemen-
tation operates twice as fast for encryption and around three times slower for decryp-
tion. With respect to the cycles per byte metric, QC-MDPC McEliece benefits from its
larger block sizes although encrypting large data using public key schemes is a rare
use case. Again, public keys are considerably larger than for QC-MDPC. The NTRU
implementation is only reported for a 256-bit security level and requires less cycles for
one operation at this security level.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

8. CONCLUSION
In this work we proposed and reviewed optimized decoders for MDPC codes as well
as implementations of QC-MDPC McEliece encryption for reconfigurable hardware,
embedded microcontrollers and general-purpose CPUs. In light of the achieved per-
formance, resource consumption and code size, we conclude that QC-MDPC McEliece
can not only provide highly efficient asymmetric encryption and decryption but also
extremely lightweight implementations on a wide range of different platforms.

Acknowledgements
This work was supported in part by the German Federal Ministry of Economics
and Technology (Grant 01ME12025 SecMobil) and the Commission of the Euro-
pean Communities through the Horizon 2020 program under project number 645622
PQCRYPTO. We would like to thank Manuel Bluhm and Stefan Heyse for their sup-
port on this work.

REFERENCES
Marco Baldi, Marco Bodrato, and Franco Chiaraluce. 2008. A New Analysis of the McEliece Cryptosys-

tem Based on QC-LDPC Codes. In Security and Cryptography for Networks, SCN 2008. Proceedings
(LNCS), Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti (Eds.), Vol. 5229. Springer, 246–262.
DOI:http://dx.doi.org/10.1007/978-3-540-85855-3 17

Marco Baldi and Franco Chiaraluce. 2007. Cryptanalysis of a New Instance of McEliece Cryptosystem Based
on QC-LDPC Codes. In Information Theory, 2007. ISIT 2007. IEEE International Symposium on. 2591–
2595. DOI:http://dx.doi.org/10.1109/ISIT.2007.4557609

M. Baldi, F. Chiaraluce, and R. Garello. 2006. On the Usage of Quasi-Cyclic Low-Density Parity-Check Codes
in the McEliece Cryptosystem. In Communications and Electronics, 2006. ICCE ’06. First International
Conference on. 305–310. DOI:http://dx.doi.org/10.1109/CCE.2006.350824

M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni. 2007. Quasi-Cyclic Low-Density Parity-Check Codes
in the McEliece Cryptosystem. In Communications, 2007. ICC ’07. IEEE International Conference on.
951–956. DOI:http://dx.doi.org/10.1109/ICC.2007.161

Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. 2012. Decoding Random Binary Linear
Codes in O(2n/20): How 1 + 1 = 0 Improves Information Set Decoding. In Advances in Cryptology -
EUROCRYPT 2012. Proceedings (LNCS), David Pointcheval and Thomas Johansson (Eds.), Vol. 7237.
Springer, 520–536. DOI:http://dx.doi.org/10.1007/978-3-642-29011-4 31

Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Otmani. 2009. Reducing
Key Length of the McEliece Cryptosystem. In Proceedings of the 2nd International Confer-
ence on Cryptology in Africa (AFRICACRYPT ’09). Springer-Verlag, Berlin, Heidelberg, 77–97.
DOI:http://dx.doi.org/10.1007/978-3-642-02384-2 6

E. Berlekamp, R. McEliece, and H. van Tilborg. 1978. On the Inherent Intractability of Certain Cod-
ing Problems (Corresp.). Information Theory, IEEE Transactions on 24, 3 (may 1978), 384 – 386.
DOI:http://dx.doi.org/10.1109/TIT.1978.1055873

Daniel J. Bernstein, Tung Chou, and Peter Schwabe. 2013. McBits: Fast Constant-Time Code-Based Cryp-
tography, See Bertoni and Coron [2013], 250–272. DOI:http://dx.doi.org/10.1007/978-3-642-40349-1 15

Guido Bertoni and Jean-Sébastien Coron (Eds.). 2013. Cryptographic Hardware and Embedded Systems -
CHES 2013. Proceedings. LNCS, Vol. 8086. Springer. DOI:http://dx.doi.org/10.1007/978-3-642-40349-1

Felipe P. Biasi, Paulo S. L. M. Barreto, Rafael Misoczki, and Wilson Vicente Ruggiero. 2014. Scaling efficient
code-based cryptosystems for embedded platforms. J. Cryptographic Engineering 4, 2 (2014), 123–134.
DOI:http://dx.doi.org/10.1007/s13389-014-0070-1

Bhaskar Biswas and Nicolas Sendrier. 2008. McEliece Cryptosystem Implementation: Theory and Practice.
In Post-Quantum Cryptography, PQCrypto’08. Proceedings (LNCS), Johannes Buchmann and Jintai
Ding (Eds.), Vol. 5299. Springer, 47–62. DOI:http://dx.doi.org/10.1007/978-3-540-88403-3 4

Pierre-Louis Cayrel, Gerhard Hoffmann, and Edoardo Persichetti. 2012. Efficient Implementation of a
CCA2-Secure Variant of McEliece Using Generalized Srivastava Codes. In Public Key Cryptography
- PKC 2012. Proceedings (LNCS), Marc Fischlin, Johannes Buchmann, and Mark Manulis (Eds.), Vol.
7293. Springer, 138–155. DOI:http://dx.doi.org/10.1007/978-3-642-30057-8 9

Vassil S. Dimitrov, Kimmo U. Järvinen, M. J. Jacobson, W. F. Chan, and Zhun Huang. 2006. FPGA Implemen-
tation of Point Multiplication on Koblitz Curves Using Kleinian Integers. In Cryptographic Hardware
and Embedded Systems - CHES 2006. Proceedings (LNCS), Louis Goubin and Mitsuru Matsui (Eds.),
Vol. 4249. Springer, 445–459. DOI:http://dx.doi.org/10.1007/11894063 35

eBACS 2014. eBACS: ECRYPT Benchmarking of Cryptographic Systems. (2014). Accessed: 2014-06-30 URL:
http://bench.cr.yp.to/results-encrypt.html.

Thomas Eisenbarth, Tim Güneysu, Stefan Heyse, and Christof Paar. 2009. MicroEliece: McEliece
for Embedded Devices. In Cryptographic Hardware and Embedded Systems - CHES 2009.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1007/978-3-540-85855-3_17
http://dx.doi.org/10.1109/ISIT.2007.4557609
http://dx.doi.org/10.1109/CCE.2006.350824
http://dx.doi.org/10.1109/ICC.2007.161
http://dx.doi.org/10.1007/978-3-642-29011-4_31
http://dx.doi.org/10.1007/978-3-642-02384-2_6
http://dx.doi.org/10.1109/TIT.1978.1055873
http://dx.doi.org/10.1007/978-3-642-40349-1_15
http://dx.doi.org/10.1007/978-3-642-40349-1
http://dx.doi.org/10.1007/s13389-014-0070-1
http://dx.doi.org/10.1007/978-3-540-88403-3_4
http://dx.doi.org/10.1007/978-3-642-30057-8_9
http://dx.doi.org/10.1007/11894063_35
http://bench.cr.yp.to/results-encrypt.html

A:22

Proceedings (LNCS), Christophe Clavier and Kris Gaj (Eds.), Vol. 5747. Springer, 49–64.
DOI:http://dx.doi.org/10.1007/978-3-642-04138-9 4

Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich. 2010. Algebraic
Cryptanalysis of McEliece Variants with Compact Keys. In Advances in Cryptology - EU-
ROCRYPT 2010. Proceedings (LNCS), Henri Gilbert (Ed.), Vol. 6110. Springer, 279–298.
DOI:http://dx.doi.org/10.1007/978-3-642-13190-5 14

Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric de Portzamparc, and Jean-Pierre Tillich.
2014a. Folding Alternant and Goppa Codes with Non-Trivial Automorphism Groups. Cryptology ePrint
Archive, Report 2014/353. (2014). https://eprint.iacr.org/2014/353.

Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric de Portzamparc, and Jean-Pierre Tillich.
2014b. Structural Cryptanalysis of McEliece Schemes with Compact Keys. Cryptology ePrint Archive,
Report 2014/210. (2014). https://eprint.iacr.org/2014/210.

Robert G. Gallager. 1962. Low-density parity-check codes. IRE Transactions on Information Theory 8, 1
(1962), 21–28. DOI:http://dx.doi.org/10.1109/TIT.1962.1057683

Santosh Ghosh, Jeroen Delvaux, Leif Uhsadel, and Ingrid Verbauwhede. 2012. A Speed Area Opti-
mized Embedded Co-processor for McEliece Cryptosystem. In 23rd IEEE International Conference on
Application-Specific Systems, Architectures and Processors, ASAP 2012. IEEE Computer Society, 102–
108. DOI:http://dx.doi.org/10.1109/ASAP.2012.16

Tim Güneysu and Christof Paar. 2008. Ultra High Performance ECC over NIST Primes on
Commercial FPGAs. In Cryptographic Hardware and Embedded Systems - CHES 2008. Pro-
ceedings (LNCS), Elisabeth Oswald and Pankaj Rohatgi (Eds.), Vol. 5154. Springer, 62–78.
DOI:http://dx.doi.org/10.1007/978-3-540-85053-3 5

Helion. 2010. Modular Exponentiation Core Family for Xilinx FPGA. Data Sheet. (June 2010). http://www.
heliontech.com/downloads/modexp xilinx datasheet.pdf.

Stefan Heyse. 2011. Implementation of McEliece Based on Quasi-dyadic Goppa Codes for Embedded De-
vices. In Post-Quantum Cryptography - PQCrypto 2011. Proceedings (LNCS), Bo-Yin Yang (Ed.), Vol.
7071. Springer, 143–162. DOI:http://dx.doi.org/10.1007/978-3-642-25405-5 10

Stefan Heyse and Tim Güneysu. 2012. Towards One Cycle per Bit Asymmetric Encryption: Code-
Based Cryptography on Reconfigurable Hardware, See Prouff and Schaumont [2012], 340–355.
DOI:http://dx.doi.org/10.1007/978-3-642-33027-8 20

Stefan Heyse, Ingo von Maurich, and Tim Güneysu. 2013. Smaller Keys for Code-Based Cryptography:
QC-MDPC McEliece Implementations on Embedded Devices, See Bertoni and Coron [2013], 273–292.
DOI:http://dx.doi.org/10.1007/978-3-642-40349-1 16

J. Hlavac, R. Lorencz, and M. Hadacek. 2010. True random number generation on an Atmel AVR microcon-
troller. In Computer Engineering and Technology (ICCET), 2010 2nd International Conference on, Vol. 2.
V2–493–V2–495. DOI:http://dx.doi.org/10.1109/ICCET.2010.5485568

W C Huffman and V Pless. 2010. Fundamentals of Error-Correcting Codes. (2010).
Intel 2014. Intel Digital Random Number Generator (DRNG). (2014). Accessed: 2014-06-30 URL: https:

//software.intel.com/sites/default/files/managed/4d/91/DRNG Software Implementation Guide 2.0.pdf.
A.A. Kamal and A.M. Youssef. 2009. An FPGA implementation of the NTRUEncrypt

cryptosystem. In Microelectronics (ICM), 2009 International Conference on. 209–212.
DOI:http://dx.doi.org/10.1109/ICM.2009.5418649

Kazukuni Kobara and Hideki Imai. 2001. Semantically Secure McEliece Public-Key Cryptosystems-
Conversions for McEliece PKC. In Public Key Cryptography, PKC 2001. Proceedings (LNCS), Kwangjo
Kim (Ed.), Vol. 1992. Springer, 19–35. DOI:http://dx.doi.org/10.1007/3-540-44586-2 2

Zhe Liu, Johann Großschädl, and Ilya Kizhvatov. 2010. Efficient and side-channel resistant RSA implemen-
tation for 8-bit AVR microcontrollers. In Workshop on the Security of the Internet of Things - SOCIOT’10.

Zhe Liu, Erich Wenger, and Johann Groschädl. 2014. MoTE-ECC: Energy-Scalable Elliptic Curve Cryptog-
raphy for Wireless Sensor Networks. In Applied Cryptography and Network Security, Ioana Boureanu,
Philippe Owesarski, and Serge Vaudenay (Eds.). LNCS, Vol. 8479. Springer International Publishing,
361–379. DOI:http://dx.doi.org/10.1007/978-3-319-07536-5 22

R. J. McEliece. 1978. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space Network
Progress Report 44 (Jan. 1978), 114–116.

Rafael Misoczki and Paulo S. L. M. Barreto. 2009. Compact McEliece Keys from Goppa Codes.
In Selected Areas in Cryptography, SAC 2009. Revised Selected Papers (LNCS), Michael J. Ja-
cobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini (Eds.), Vol. 5867. Springer, 376–392.
DOI:http://dx.doi.org/10.1007/978-3-642-05445-7 24

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. 2013. MDPC-
McEliece: New McEliece variants from Moderate Density Parity-Check codes. In Proceed-
ings of the 2013 IEEE International Symposium on Information Theory. IEEE, 2069–2073.
DOI:http://dx.doi.org/10.1109/ISIT.2013.6620590

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. 2012. MDPC-McEliece:
New McEliece Variants from Moderate Density Parity-Check Codes. Cryptology ePrint Archive, Report
2012/409. (2012). https://eprint.iacr.org/2012/409.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1007/978-3-642-04138-9_4
http://dx.doi.org/10.1007/978-3-642-13190-5_14
https://eprint.iacr.org/2014/353
https://eprint.iacr.org/2014/210
http://dx.doi.org/10.1109/TIT.1962.1057683
http://dx.doi.org/10.1109/ASAP.2012.16
http://dx.doi.org/10.1007/978-3-540-85053-3_5
http://www.heliontech.com/downloads/modexp_xilinx_datasheet.pdf
http://www.heliontech.com/downloads/modexp_xilinx_datasheet.pdf
http://dx.doi.org/10.1007/978-3-642-25405-5_10
http://dx.doi.org/10.1007/978-3-642-33027-8_20
http://dx.doi.org/10.1007/978-3-642-40349-1_16
http://dx.doi.org/10.1109/ICCET.2010.5485568
https://software.intel.com/sites/default/files/managed/4d/91/DRNG_Software_Implementation_Guide_2.0.pdf
https://software.intel.com/sites/default/files/managed/4d/91/DRNG_Software_Implementation_Guide_2.0.pdf
http://dx.doi.org/10.1109/ICM.2009.5418649
http://dx.doi.org/10.1007/3-540-44586-2_2
http://dx.doi.org/10.1007/978-3-319-07536-5_22
http://dx.doi.org/10.1007/978-3-642-05445-7_24
http://dx.doi.org/10.1109/ISIT.2013.6620590
https://eprint.iacr.org/2012/409

A:23

C. Monico, J. Rosenthal, and A. Shokrollahi. 2000. Using Low Density Parity Check Codes in the McEliece
Cryptosystem. In Information Theory, 2000. Proceedings. IEEE International Symposium on. 215.
DOI:http://dx.doi.org/10.1109/ISIT.2000.866513

Michele Mosca (Ed.). 2014. Post-Quantum Cryptography - PQCrypto 2014. Proceedings. LNCS, Vol. 8772.
Springer. DOI:http://dx.doi.org/10.1007/978-3-319-11659-4

H. Niederreiter. 1986. Knapsack-type cryptosystems and algebraic coding theory. Problems Control Inform.
Theory/Problemy Upravlen. Teor. Inform. 15, 2 (1986), 159–166.

Ryo Nojima, Hideki Imai, Kazukuni Kobara, and Kirill Morozov. 2008. Semantic security for the
McEliece cryptosystem without random oracles. Des. Codes Cryptography 49, 1-3 (2008), 289–305.
DOI:http://dx.doi.org/10.1007/s10623-008-9175-9

Ayoub Otmani, Jean-Pierre Tillich, and Léonard Dallot. 2010. Cryptanalysis of Two McEliece Cryptosys-
tems Based on Quasi-Cyclic Codes. Mathematics in Computer Science 3, 2 (2010), 129–140. http:
//springerlink.metapress.com/content/j68m3pp274823852/

Ray A. Perlner. 2014. Optimizing Information Set Decoding Algorithms to Attack Cyclosymmetric MDPC
Codes, See Mosca [2014], 220–228. DOI:http://dx.doi.org/10.1007/978-3-319-11659-4 13

Thomas Pöppelmann and Tim Güneysu. 2013. Towards Practical Lattice-Based Public-Key Encryption
on Reconfigurable Hardware. In Selected Areas in Cryptography - SAC 2013. Revised Selected Pa-
pers (LNCS), Tanja Lange, Kristin E. Lauter, and Petr Lisonek (Eds.), Vol. 8282. Springer, 68–85.
DOI:http://dx.doi.org/10.1007/978-3-662-43414-7 4

Thomas Pöppelmann and Tim Güneysu. 2014. Area Optimization of Lightweight Lattice-Based Encryption
on Reconfigurable Hardware. In IEEE International Symposium on Circuits and Systemss, ISCAS 2014.
IEEE, 2796–2799. DOI:http://dx.doi.org/10.1109/ISCAS.2014.6865754

Emmanuel Prouff and Patrick Schaumont (Eds.). 2012. Cryptographic Hardware and Embedded Systems -
CHES 2012. Proceedings. LNCS, Vol. 7428. Springer. DOI:http://dx.doi.org/10.1007/978-3-642-33027-8

Chester Rebeiro, Sujoy Sinha Roy, and Debdeep Mukhopadhyay. 2012. Pushing the Limits of High-Speed
GF(2m) Elliptic Curve Scalar Multiplication on FPGAs, See Prouff and Schaumont [2012], 494–511.
DOI:http://dx.doi.org/10.1007/978-3-642-33027-8

Sujoy Sinha Roy, Chester Rebeiro, and Debdeep Mukhopadhyay. 2012. A Parallel Architecture for Koblitz
Curve Scalar Multiplications on FPGA Platforms. In 15th Euromicro Conference on Digital System
Design, DSD 2012. IEEE, 553–559. DOI:http://dx.doi.org/10.1109/DSD.2012.10

Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Verbauwhede.
2013. Compact Ring-LWE based Cryptoprocessor. Cryptology ePrint Archive, Report 2013/866. (2013).
http://eprint.iacr.org/2013/866.

Nicolas Sendrier. 2011. Decoding One Out of Many. In Post-Quantum Cryptogra-
phy, Bo-Yin Yang (Ed.). LNCS, Vol. 7071. Springer Berlin Heidelberg, 51–67.
DOI:http://dx.doi.org/10.1007/978-3-642-25405-5 4

Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (1997), 1484–1509.
DOI:http://dx.doi.org/10.1137/S0097539795293172

Abdulhadi Shoufan, Thorsten Wink, H. Gregor Molter, Sorin A. Huss, and Eike Kohnert. 2010. A Novel
Cryptoprocessor Architecture for the McEliece Public-Key Cryptosystem. IEEE Trans. Computers 59,
11 (2010), 1533–1546. DOI:http://dx.doi.org/10.1109/TC.2010.115

Abdulhadi Shoufan, Thorsten Wink, H. Gregor Molter, Sorin A. Huss, and Falko Strenzke. 2009. A Novel
Processor Architecture for McEliece Cryptosystem and FPGA Platforms. In 20th IEEE International
Conference on Application-Specific Systems, Architectures and Processors, ASAP 2009. IEEE, 98–105.
DOI:http://dx.doi.org/10.1109/ASAP.2009.29

Daisuke Suzuki. 2007. How to Maximize the Potential of FPGA Resources for Modular Ex-
ponentiation. In Cryptographic Hardware and Embedded Systems - CHES 2007. Proceed-
ings (LNCS), Pascal Paillier and Ingrid Verbauwhede (Eds.), Vol. 4727. Springer, 272–288.
DOI:http://dx.doi.org/10.1007/978-3-540-74735-2 19

Daisuke Suzuki and Tsutomu Matsumoto. 2011. How to Maximize the Potential of FPGA-Based DSPs
for Modular Exponentiation. IEICE Transactions 94-A, 1 (2011), 211–222. http://search.ieice.org/bin/
summary.php?id=e94-a 1 211

Ingo von Maurich and Tim Güneysu. 2014a. Lightweight code-based cryptography: QC-MDPC
McEliece encryption on reconfigurable devices. In Design, Automation & Test in Europe
Conference & Exhibition, DATE 2014, Dresden, Germany, March 24-28, 2014. IEEE, 1–6.
DOI:http://dx.doi.org/10.7873/DATE.2014.051

Ingo von Maurich and Tim Güneysu. 2014b. Towards Side-Channel Resistant Implementations
of QC-MDPC McEliece Encryption on Constrained Devices, See Mosca [2014], 266–282.
DOI:http://dx.doi.org/10.1007/978-3-319-11659-4 16

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1109/ISIT.2000.866513
http://dx.doi.org/10.1007/978-3-319-11659-4
http://dx.doi.org/10.1007/s10623-008-9175-9
http://springerlink.metapress.com/content/j68m3pp274823852/
http://springerlink.metapress.com/content/j68m3pp274823852/
http://dx.doi.org/10.1007/978-3-319-11659-4_13
http://dx.doi.org/10.1007/978-3-662-43414-7_4
http://dx.doi.org/10.1109/ISCAS.2014.6865754
http://dx.doi.org/10.1007/978-3-642-33027-8
http://dx.doi.org/10.1007/978-3-642-33027-8
http://dx.doi.org/10.1109/DSD.2012.10
http://eprint.iacr.org/2013/866
http://dx.doi.org/10.1007/978-3-642-25405-5_4
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1109/TC.2010.115
http://dx.doi.org/10.1109/ASAP.2009.29
http://dx.doi.org/10.1007/978-3-540-74735-2_19
http://search.ieice.org/bin/summary.php?id=e94-a_1_211
http://search.ieice.org/bin/summary.php?id=e94-a_1_211
http://dx.doi.org/10.7873/DATE.2014.051
http://dx.doi.org/10.1007/978-3-319-11659-4_16

A:24

Appendix

Table VIII. Evaluation of the performance and error correcting capability of the decoders described in
Section 3.3 for QC-MDPC codes with parameters n0 = 2, n = 9602, r = 4801, w = 90 on an AMD
Opteron 6276 CPU at 2.3 GHz. Note, a failure rate of 0 means that no decoding error occurred during
our evaluations. The decoders are still probabilistic and will eventually fail to decode an input.

Variant #errors time in ms failure rate avg. #iterations

Decoder A 84 32.15 0.0000000 5.2922
85 33.26 0.0000010 5.4027
86 34.16 0.0000058 5.5234
87 34.56 0.0000196 5.6792
88 34.90 0.0000794 5.8728
89 36.47 0.0002760 6.1311
90 38.44 0.0008348 6.4876

Decoder B 84 15.41 0.0002957 3.0936
85 15.93 0.0012654 3.1854
86 16.67 0.0046348 3.3343
87 17.67 0.0138536 3.5515
88 19.07 0.0360551 3.8790
89 21.47 0.0798088 4.3542
90 23.36 0.1534663 5.0191

Decoder C1 84 25.89 0.0000002 5.2961
85 26.79 0.0000008 5.4014
86 27.62 0.0000060 5.5250
87 28.46 0.0000282 5.6822
88 28.76 0.0000798 5.8730
89 29.65 0.0002744 6.1354
90 31.55 0.0008442 6.4895

Decoder C2 84 16.03 0.0000000 3.3780
85 16.60 0.0000000 3.4254
86 16.90 0.0000000 3.4864
87 17.47 0.0000000 3.5648
88 18.01 0.0000002 3.6726
89 18.88 0.0000026 3.8301
90 19.96 0.0000098 4.0596

Decoder C3 84 14.83 0.0000000 3.3776
85 15.42 0.0000000 3.4263
86 15.74 0.0000000 3.4871
87 16.26 0.0000004 3.5656
88 16.77 0.0000004 3.6736
89 17.65 0.0000020 3.8308
90 18.90 0.0000096 4.0602

Decoder D1 84 8.02 0.0000037 2.4019
85 8.32 0.0000180 2.4985
86 8.65 0.0000579 2.5975
87 8.99 0.0001879 2.6965
88 9.34 0.0005487 2.7928
89 9.70 0.0014897 2.8914
90 10.09 0.0036869 2.9992

Decoder D2 84 8.79 0.0000000 2.4021
85 9.00 0.0000000 2.4982
86 9.40 0.0000000 2.5977
87 9.57 0.0000000 2.6962
88 10.07 0.0000000 2.7938
89 10.32 0.0000000 2.8950
90 10.26 0.0000002 3.0106

Decoder D3 84 8.10 0.0000000 2.4021
85 8.17 0.0000000 2.4975
86 8.47 0.0000000 2.5964
87 8.71 0.0000000 2.6964
88 9.06 0.0000000 2.7941
89 9.45 0.0000000 2.8948
90 9.99 0.0000000 3.0109

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

Ta
bl

e
IX

.P
er

fo
rm

an
ce

co
m

pa
ris

on
of

ou
rQ

C
-M

D
P

C
FP

G
A

im
pl

em
en

ta
tio

ns
w

ith
ot

he
rp

ub
lic

ke
y

en
cr

yp
tio

n
sc

he
m

es
.1

O
cc

up
ie

d
re

so
ur

ce
s

an
d

B
R

A
M

s
ar

e
gi

ve
n

fo
ra

co
m

bi
ne

d
en

cr
yp

tio
n

an
d

de
cr

yp
tio

n
co

re
.2

A
dd

iti
on

al
ly

us
es

1
D

S
P

48
.3

A
dd

iti
on

al
ly

us
es

26
D

S
P

48
s.

4
A

dd
iti

on
al

ly
us

es
17

D
S

P
48

s.

Sc
he

m
e

P
la

tf
or

m
f

[M
H

z]
B

it
s

T
im

e/
O

p
C

yc
le

s
M

bi
t/

s
F

F
s

L
U

T
s

Sl
ic

es
B

R
A

M

T
hi

s
w

or
k

(e
nc

)
X

C
6V

L
X

24
0T

35
1.

7
4,

80
1

13
.7

µs
4,

80
1

35
1.

7
14

,4
29

9,
20

1
2,

92
4

0
T

hi
s

w
or

k
(d

ec
)

X
C

6V
L

X
24

0T
19

9.
3

4,
80

1
82

.1
µs

16
,3

63
58

.5
41

,7
14

42
,2

74
10

,9
88

0
T

hi
s

w
or

k
(d

ec
it

er
.)

X
C

6V
L

X
24

0T
22

2.
5

4,
80

1
12

5.
4

µs
27

,9
19

38
.3

32
,9

62
36

,5
02

10
,3

64
0

M
cE

lie
ce

(e
nc

)[
Sh

ou
fa

n
et

al
.2

01
0]

X
C

5V
L

X
11

0T
16

3
51

2
50

0
µs

n/
a

1.
0

n/
a

n/
a

14
,5

37
75

1

M
cE

lie
ce

(d
ec

)[
Sh

ou
fa

n
et

al
.2

01
0]

X
C

5V
L

X
11

0T
16

3
51

2
1,

29
0

µs
n/

a
0.

4
n/

a
n/

a
14

,5
37

75
1

M
cE

lie
ce

(d
ec

)[
G

ho
sh

et
al

.2
01

2]
X

C
5V

L
X

11
0T

19
0

1,
75

1
50

0
µs

94
,2

49
3.

5
n/

a
n/

a
1,

38
5

5

N
ie

de
rr

ei
te

r
(e

nc
)[

H
ey

se
an

d
G

ün
ey

su
20

12
]

X
C

6V
L

X
24

0T
30

0
19

2
0.

66
µs

20
0

29
0.

9
87

5
92

6
31

5
17

N
ie

de
rr

ei
te

r
(d

ec
)[

H
ey

se
an

d
G

ün
ey

su
20

12
]

X
C

6V
L

X
24

0T
25

0
19

2
58

.7
8

µs
14

,5
00

3.
3

12
,8

61
9,

40
9

3,
88

7
9

R
in

g-
LW

E
(e

nc
)[

R
oy

et
al

.2
01

3]
X

C
6V

L
X

75
T

31
3

25
6

20
.1

µs
6,

30
0

12
.7

86
0

1,
34

9
n/

a
21

R
in

g-
LW

E
(d

ec
)[

R
oy

et
al

.2
01

3]
X

C
6V

L
X

75
T

31
3

25
6

9.
1

µs
2,

80
0

28
.1

86
0

1,
34

9
n/

a
21

,2

R
in

g-
LW

E
(e

nc
)[

P
öp

pe
lm

an
n

an
d

G
ün

ey
su

20
13

]
X

C
6V

L
X

75
T

26
2

25
6

26
.2

µs
6,

86
1

9.
8

3,
62

4
4,

54
9

1,
50

6
12

1
,2

R
in

g-
LW

E
(e

nc
)[

P
öp

pe
lm

an
n

an
d

G
ün

ey
su

20
13

]
X

C
6V

L
X

75
T

26
2

25
6

16
.8

µs
4,

40
4

15
.2

3,
62

4
4,

54
9

1,
50

6
12

1
,2

N
T

R
U

(e
nc

/d
ec

)[
K

am
al

an
d

Yo
us

se
f2

00
9]

X
C

V
16

00
E

62
.3

25
1

1.
54

/1
.4

1
µs

96
/8

8
16

3/
17

8
5,

16
0

27
,2

92
14

,3
52

0

E
C

C
-P

22
4

[G
ün

ey
su

an
d

Pa
ar

20
08

]
X

C
4V

F
X

12
48

7
22

4
36

5.
10

µs
17

7,
75

5
0.

6
1,

89
2

1,
82

5
1,

58
0

11
3

E
C

C
-1

63
[R

eb
ei

ro
et

al
.2

01
2]

X
C

5V
L

X
85

T
16

7
16

3
8.

60
µs

14
36

18
.9

n/
a

10
,1

76
3,

44
6

0
E

C
C

-1
63

[R
oy

et
al

.2
01

2]
V

ir
te

x-
4

45
.5

16
3

12
.1

0
µs

55
2

13
.4

n/
a

n/
a

12
,4

30
0

E
C

C
-1

63
[D

im
it

ro
v

et
al

.2
00

6]
V

ir
te

x-
II

12
8

16
3

35
.7

5
µs

45
76

4.
6

n/
a

n/
a

22
51

6

R
SA

-1
02

4
[S

uz
uk

ia
nd

M
at

su
m

ot
o

20
11

]
X

C
5V

L
X

30
T

45
0

1,
02

4
1,

52
0

µs
68

4,
00

0
0.

7
n/

a
n/

a
3,

23
7

54

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Contribution
	Outline

	Preliminaries
	(QC-)MDPC Codes
	The QC-MDPC McEliece Cryptosystem
	Security of QC-MDPC McEliece
	Parameter Selection

	Efficient Decoding of (QC-)MDPC Codes
	Decoding (QC-)MDPC Codes
	Decoding Optimizations
	Investigated Decoding Algorithms
	Decoding Performance Evaluation
	Decoding Algorithm Selection

	High-Performance QC-MDPC McEliece for Reconfigurable Hardware
	Design Considerations
	High-Performance Implementation
	Implementation Results

	Lightweight QC-MDPC McEliece for Reconfigurable Hardware
	Design Considerations
	Lightweight Implementation
	Implementation Results

	QC-MDPC McEliece for Embedded Microcontrollers
	Target Platform
	Implementing QC-MDPC McEliece for the STM32F407
	Implementation Results

	QC-MDPC McEliece on General-Purpose Processors
	Vectorized Implementation of QC-MDPC McEliece
	Implementation Results

	Conclusion

